Looking 1nto the Black Box: Monitoring Computer
Architecture Simulations 1in Real-Time with
AkitaRTM

Ali Mosallaei

Electrical and Computer Engineering Dept.
University of Michigan
Ann Arbor, USA
alimos@umich.edu

Abstract—Computer architecture simulators are essential for
validating novel chip designs. However, they often provide little
transparency during execution. This opaqueness limits the ability
of users to identify issues during the simulation, leading to
both wasted computational and human time. We address these
issues by providing an intuitive user experience during simulation
execution. Particularly, we reveal the status of executions and
allow users to control the execution of a computer architecture
simulator through AkitaRTM, an interactive web-based tool for
real-time monitoring of computer architecture simulations. We
based its design on the design workflow inefficiencies experienced
by computer architects when using simulations. We demonstrate
AkitaRTM’s utility through two case studies, the second leading
to a patch in the simulator. Additionally, we conducted a user
study with computer architects, aiming to validate AkitaRTM.
We found that, in addition to solving the observed problems,
AkitaRTM also provided an educational benefit by making
simulators more transparent to users. Based on these findings,
we reflect upon the design of AkitaRTM and provide guidance
for future human-centered tools in this space.

Index Terms—computer architecture simulation, real-time
monitoring, debugging, user study

I. INTRODUCTION

Computer architecture simulators play a pivotal role in
developing and optimizing modern computer chips and hard-
ware [32]. These tools provide a virtual environment for
architects and developers to analyze, design, and test various
hardware configurations and instruction sets without the need
for physical prototypes. By facilitating detailed performance
analysis and design space exploration, these simulators enable
more efficient and cost-effective development cycles.

A major problem of computer architecture simulators, as
discussed in prior work across the community [5], [26], [27],
[31], [44], is slow simulation speed. As cycle-level simulators
are usually millions of times slower than real hardware, simu-
lating one second of execution can easily last days, weeks, or
years [7], [39], [44]. This slowdown factor significantly limits
the capability of computer architecture simulators, slowing
down scientific innovation.

The most of the work was done while Ali Mosallaei was a research intern
at William & Mary.

Katherine E. Isaacs
Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, USA
kisaacs @sci.utah.edu

Yifan Sun
Dept. of Computer Science
William & Mary
Williamsburg, USA
ysun25@wm.edu

Existing methodologies mainly focus on “finishing the use-
ful simulations faster.” Research along these lines includes
parallel simulation [34], [39] and sampling-based methods [5],
[10], [27], [31]. However, little work solves the problem
of how we can terminate problematic simulations early. We
believe developing a systematic method that enables “fail
early, fail fast” simulation can significantly accelerate the pace
of computer architecture research by reducing researchers’
wait time and freeing their computational resources for more
fruitful investigations.

We consider the problem of not being able to “fail early,
fail fast” to be rooted in the limited interactivity provided
by computer architecture simulators. Computer architecture
simulators typically work in a manner where users provide
some input, wait for a long time (possibly days to weeks) for
results to be calculated, and collect and analyze the results.
It is inconvenient at best and impossible at worst for users
to examine or control the simulation while it is running.
These long cycles of waiting and analysis lead to excessively
long turnaround times in research and development and can
decelerate scientific discovery and engineering innovation.

One way to shorten this development cycle is to allow users
to analyze partial simulation results while it is running. Yet,
existing methods that enable user interaction with simulators
are often constrained. These applications usually dump large
amounts of information to the command-line interface [8],
[12], [21], causing problems of having too much and, at
times, too little useful information for the architect to digest
in one sitting. As simulation developers cannot predict what
information users need at any one time, it may be tempting
for the developer to dump unnecessary data into the terminal,
overwhelming users. However, even if the amount of data is
large, the output may still not include the information required
by the user. Solving this problem requires tools to provide a
method for users to look into the metaphorical “black box” of
the simulation at run time.

We pioneer the work of developing a formal real-time
monitoring tool by implementing it as a “plugin” of a popular
GPU simulator, MGPUSim [39]. MGPUSim is an AMD-based

https://orcid.org/0000-0001-9015-0018
https://orcid.org/0000-0002-9947-928X
https://orcid.org/0000-0003-3532-6521

GPU simulator that supports multi-GPU simulations. We se-
lected MGPUSim because it provides a friendly programming
interface and a drop-in plugin system that allows us to easily
build a modular monitoring tool. However, the lessons learned
from building this tool are not constrained to MGPUSim;
they are generally applicable to a wide range of computer
architecture simulators or even simulation tools in general.

The design and development of AkitaRTM has been a multi-
year process, primarily influenced by interactions with other
computer architecture researchers to understand their pain
points. Based on frequent, informal interviews with computer
architects, we carefully chose and designed features within
AkitaRTM. After developing each feature, we collect feedback
and additional user needs for new features, as well as edits to
already implemented features. This continual process, being
the basis of success for this tool, is iterative and based on
challenges that continue to evolve in hardware development.
AkitaRTM is both developed and released in an open-sourced
manner under the permissive MIT license. The link will be
revealed after the review process.

We validate the design of AkitaRTM through case stud-
ies (section V) and a user study with computer architects
(section VI). In the case studies, we show how AkitaRTM
helps conduct a performance analysis on both the simulation
and the hardware and how it helped debug a hang in the
simulator. To further understand how AkitaRTM can help com-
puter architects, we perform a user study with six computer
architecture researchers. We then discuss and reflect on these
studies and the design, generating guidelines for future designs
of monitoring tools (section VIII).

Our primary contributions are:

o summarizing the needs in computer architecture simulator
monitoring (section III and section VIII)

« validating the implementation of AkitaRTM, a monitoring
tool supporting those needs (section IV), and

« advocating for applying human-centered design methods
in computer architecture research.

II. BACKGROUND AND RELATED WORK

MGPUSim [39] is a GPU simulator that simulates OpenCL
workloads running on AMD GPUs. In MGPUSim, groups
of hardware circuits (e.g., computing cores, cache units) are
organized as Components, which are specially defined structs
within the program. Components can only communicate by
exchanging messages. The isolation of components suggests
that we can develop interfaces that allow users to monitor
individual components.

MGPUSim’s choice of the Go programming language ne-
cessitated that AkitaRTM also be developed in Go. Our expe-
rience with Go has highlighted several significant advantages
over more traditional languages such as C or C++. Firstly,
Go’s design is inherently suited for cloud services, making
the development of web servers using Go a seamless process.
Additionally, Go incorporates pprof [16] as an inbuilt library,
enabling efficient profiling of the program while it runs.

Lastly, Go’s straightforward approach to integrating third-
party libraries greatly simplifies the process of implementing
features like serialization of simulation status, which reduces
the complexity typically associated with such tasks.

Apart from MGPUSim, extensive research has been con-
ducted on other GPU simulators, such as GPGPUSim [7]
(including its newer iteration, AccelSim [22]), the gem5
GPU model [18], NVArchSim [44], MacSim [23], and
Multi2Sim [43]. In the broader realm of general computer
architecture research, there is ongoing development and use
of simulators for CPUs [10], memory systems [24], [45],
[47], and domain-specific accelerators [30], [33]. Among these
simulator projects, a few, such as gem5 [8], [28] and SST [34],
show promise in creating frameworks that integrate simulator
models developed by the community. Despite the proliferation
of projects in computer architecture simulators, a notable gap
exists in providing solutions for in-situ (during simulation
execution) analysis.

Simulator researchers have reduced simulator execution
time through methods such as parallel simulation and
sampling-based simulation. Parallel computer architecture
simulation [11], [34], [35], [39] has been demonstrated to be
able to improve simulation performance from a few times to
hundreds of times. Meanwhile, sampling-based simulation [6],
[10], [27], [31], [36] usually can yield a much higher speedup
by skipping repeated simulation segments, but also suffer risks
of having higher error. Unlike these solutions, AkitaRTM
employs a human-in-the-loop method that attempts to finish
problematic simulations early rather than accelerating them.
AkitaRTM can be combined with parallel and sampling-based
methods to further reduce turnaround time.

Most existing simulators [8], [34], [43] have some type of
capability of showing real-time data to users, e.g., dumping
data periodically. However, these methods are usually ad-
hoc and cannot meet users’ needs. Expanding our search to
related fields, gate-level simulators [38] usually allow users to
monitor the logical levels of specific nodes in the circuit. The
high-performance computing (HPC) domain also commonly
engages real-time monitoring tools [1], [37], focusing on
monitoring the performance of critical HPC applications. We
consider multiple lessons from these tools: 1) aggregating
data from different sources is critical; 2) interactivity can
significantly enhance the capability of monitoring tools; and 3)
monitoring tools are highly domain-specific, meaning existing
tools cannot be directly applied to the computer architecture
domain. The gap in effective monitoring tools within the
computer architecture domain, coupled with the potential
benefits identified from related fields, underscores the need
for a dedicated tool.

III. DETERMINING MONITORING NEEDS

Writing all of the possible raw data available during a
simulation does not provide architects with the information
and insights they need to steer or prematurely end a simulation.
Instead, it is necessary to curate which data is provided to
users and to transform the data into a format that architects

can use. To identify data and information needs, we iteratively
considered and prioritized features needed during monitoring.
We describe the five common, highest-priority features iden-
tified below. These features guided our design and should be
considered for other simulation monitoring tools.

To identify these features, we first started with our own
needs based on firsthand experience in simulator development
and use. As we gained traction among a circle of close
collaborators, we documented needs and feedback from them
through informal interviews, using our evolving prototype as
a probe to help elicit and concretize the tasks they perform
while using simulators and the inefficiencies, limitations, and
frustrations in their existing workflows.

We frame the identified features as fasks, labeled T1 through
T5. It should be noted that our focus is not on the conventional
use of computer architecture simulators, i.e., analyzing and
comparing performance through standard simulation methods.
Instead, we consider the full life cycle of developing and using
computer architecture simulators. This exploration underscores
their importance in the broader context of computer architec-
ture development.

T1: Predicting how long a simulation will take. How long
any given simulation will take is difficult to predict. Users
face a dilemma in terms of whether to wait for a simulation
to finish or abort it and spend the resources elsewhere. They
need assistance in determining simulation progress so they can
accurately predict and decide.

This problem is exacerbated by the fact that simulations
greatly vary in the time to finish executing depending on the
hardware and software being simulated [5], [44]. The range
of this variance can be from seconds to centuries. In the
worst case, they face the Halting Problem, not knowing if the
simulation will eventually finish [29] due to simulator bugs.
As users modify simulators in an ad-hoc way, they will seldom
be confident about whether a long-running simulation is free
from hangs, another problem described later in this section.

T2: Monitoring a simulator’s resource utilization. Our
informal interviews revealed that computer architecture re-
searchers often use command line tools such as fop to monitor
CPU and memory utilization when they start a batch of simu-
lations. This monitoring is crucial for checking a simulation’s
health. For example, if simulations running simultaneously
on a single computer surpass the physical memory limit,
they might experience unnecessary performance slowdowns.
Similarly, if a simulation shows unusually low resource usage,
it could be an indication of a problem, like a simulation hang
or the simulation blocking on disk 10O.

We found that general system activity monitoring tools like
top fall short of meeting these specific requirements. Their
generic design is not tailored for detailed monitoring in this
context. For example, when several simulations are running
on one computer, each involving multiple threads, it becomes
exceedingly challenging to discern the memory consumption
of each individual simulation.

T3: Identifying causes of simulation hangs. Hanging is
a common simulator bug where all the hardware components

under simulation have no way to make forward progress due
to a deadlock. For example, when two simulation components
wait for messages from each other, they cannot move on.

Addressing hanging bugs presents a significant challenge
with conventional break-line debugging techniques. One key
difficulty is that these bugs can originate from any part of the
simulated hardware, necessitating a thorough understanding
of the hardware configuration to pinpoint the error’s location.
Furthermore, traditional break-line debuggers are designed to
operate on actively running programs; however, a hanging
simulation ceases code execution, thus rendering these de-
buggers ineffective. This complexity often leaves developers
struggling to identify the specific line of code responsible for
the hang. Resolving such an issue can demand an extensive
investment of time, ranging from two to three full working
days to even weeks. Consequently, there is a pressing demand
among architects for a tool that can streamline and simplify
this troubleshooting process.

T4: Profiling simulation performance. As suggested by
T1-T3, the performance of the simulator greatly affects the
research and development workflow of computer architects.
When adding features to the simulator, they might accidentally
also introduce performance bugs. When they notice their
simulator running slowly, they often use the command line tool
pprof [16] to collect timing information about the various
aspects of the simulator. From our interviews and experience,
we note that invoking pprof in this way typically requires re-
familiarizing themselves with pprof and looking up relevant
commands and input parameters. This added chore, while not
particularly difficult, is disruptive to their workflow enough
that some avoid profiling as long as they can. This hesitancy
to interrupt their workflow and re-familiarize themselves with
an external tool can lead to performance issues in the long
run. When the computer architect does the performance anal-
ysis, the feature causing the problem may already be deeply
integrated into the simulator and hard to change. Computer
architects developing simulators need lighter-weight access to
simulation performance data.

TS: Analyzing hardware performance bottlenecks. The
ultimate goal of using a computer architecture simulator
is to identify and understand hardware performance bot-
tlenecks [40]. Existing tools [40] require complex, labor-
intensive, and post hoc analysis to pinpoint bottlenecks. Real-
time monitoring offers an advantage by providing access to
more detailed data in the moment, which is not feasible for
full-trace recordings due to their prohibitive storage demands.
However, real-time monitoring is limited to analyzing data
from a brief period preceding the current moment. This dis-
parity in data availability necessitates the development of new
views and tools. Once the users find a performance bottleneck,
they may change hardware parameters to test if the bottlenecks
persist. Such a workflow could reduce turn-around times by
providing quick feedback.

A key point to consider is that users often initiate hundreds
to thousands of simulations, each with varying configurations
and benchmark combinations, raising questions about the

G Future Non-MGPUSim
Comp. & Simulators

Non-MGPUSIim Non-MGPUSIim

Fig. 1. An overview of the software components involved in running
AkitaRTM. We highlight the standard APIs provided by AkitaRTM, which
support new hardware components developed by users or even simulators
other than MGPUSim.

feasibility of problem identification. However, this concern
is mitigated by several factors: 1) Our focus primarily lies
on enhancing the development phase, where the number of
simulations executed is relatively limited. 2) The tool’s user-
friendly design should not require the users to spend a long
time on each simulation. If the users check a subset of
simulations more likely to suffer from problems, they will
likely find common problems. 3) Should users be unable
to detect problems early, the tool’s minimal performance
overhead ensures that reverting to traditional execution times
will not impose a significant additional burden on the users.

IV. DESIGN OF AKITARTM

We design AkitaRTM (Figure 2) to enhance the run-time
interactivity of computer architecture simulators based on the
tasks we identified previously. The resulting design is a multi-
view web-based, real-time monitoring interface.

A. Technical Overview

An overview of the components and their interactions is
shown in Figure 1. Central to AkitaRTM is a plugin (Aki-
taRTM library) to MGPUSim. To provide a configuration to
MGPUSim, the user will need to invoke the AkitaRTM library
to register hardware components under simulation. In this
process, AkitaRTM also provides APIs for users to define the
progress bars they want to show in the interface. By default,
we show the progress of GPU kernels in terms of how many
blocks have completed execution.

Upon initiating an MGPUSim program, AkitaRTM activates
a server thread (backend) that is designed to handle incoming
HTTP requests, effectively transforming any MGPUSim sim-
ulation into a web server. At the beginning of an MGPUSim
simulation, a URL is displayed on the terminal, enabling users
to easily access the server by clicking the provided link. This
server is responsible for delivering the static webpage files
(frontend) that users can navigate using their web browser. The
frontend, in turn, retrieves data from the backend via HTTP
requests. The backend of this system is developed in Go, while
the frontend utilizes HTML, CSS, and TypeScript. Leveraging
standard web technologies for the frontend allows AkitaRTM
to facilitate remote monitoring and collaborative efforts.

For simulation monitoring requests generated from a user’s
interaction with the frontend, the server thread will take
a snapshot of the corresponding component of the running
simulation and serialize the component information to the
frontend. The backend also provides auxiliary APIs that can,
for example, query current simulation time, profile simulation,
pause/resume simulation, update progress bars, and list buffer
(hardware buffers under simulation) levels.

B. API Design

AkitaRTM provides two sets of standard APIs (see Fig-
ure 1), the Go API for adding new simulator components and
the HTTP API to allow plugging in other simulators.

The Go API is small and lightweight. The
RegisterComponent function starts the monitoring
of a component. It uses reflection to discover buffers (for the
bottleneck analysis) and fields (for simulation monitoring) of
these components. Reflection eliminates the need to modify
existing code and for users to manually select fields to monitor.
Moreover, as the interface design of AkitaRTM highlights
generality, adding a new component does not require designing
a new view. Other functions include RegisterEngine, to
link the simulation engine that manages simulation progress,
and {Create|Update|Destroy}ProgressBar, to
supply data for progress bars.

Simulators written in another language can still use Aki-
taRTM by implementing the Go API to call the HTTP APL
Implementing the Go API requires only 12 functions, as
described above. To use the HTTP API, developers need to
integrate a web server that handles HTTP requests and can
serialize the field values. Simulators written in C or C++ have
mature web-serving [14] and JSON serialization [17], [19]
libraries available to aid in this task. Other requirements, such
as pausing/restarting simulation, reporting resource utilization,
and updating progress bars, should be relatively trivial to
implement. Since most simulators [8], [34] use a “Component-
Port” paradigm, there is no need for a major paradigm change,
and hence, the technical difficulty and the required work are
manageable.

C. View Design

AkitaRTM is composed of several views as a dashboard
to support the multiple tasks we identified. We defined the
layout of the interface to be semi-flexible: Most regions in the
interface serve predefined purposes, with the right side column
being reconfigurable to show different content. The dividers
can be draggable so that users can resize the regions.

1) Simulation Monitoring Views: The following views were
designed to support monitoring of the simulation’s health.

Resource utilization monitoring. As identified in task
T2, computer architects frequently check CPU and memory
usage as an indicator of how well the simulation is running.
AkitaRTM displays this information directly (Figure 2 A),
removing the need for additional user steps like running an
external program like top and searching through all the

A. Resource Monitoring C. Simulation Control

cPUM7% Mem919MB @ |u I I 0.000437143 ||

. MMU .
« driver GPU1.DRAM_3 Tick B. Bottleneck Analysis
ey e
SA 00 > TickingComponent gitlab.cc 3/sim TickingComponent o driver.(*Driver).runEngine
M run:nme malloclg’\:i HeanPoint
@ iuintime.memclrNoHeapPointers
. CU_00 . addrConverter nul null i}fjs‘gompmeﬂm T lf: i
u.(TComputeUnit).runPipeline
- CU_O1 >addrMapper gitlab. 1em/v3/dram/internal/add ing.D D,un(t,,gehc%‘fl)R P
. CU_02 -e0 cu.(*Schedulerimpl . .
. CU 03 >channel gitlab.com/akita/mem/v3/dramyinternalforg. Channelimpl :ﬁ‘f):r[f:\ct:rr‘fezg %’\?slfe E. Simulation
- <00 tracing.EndTasl .
. L1VROB_00 >ecmdQueue gitlab. i internal/cmdg.CommandQueuelmpl .gg runnmge newobject Proﬁllng
- <00 cu.(*ComputeUnit).log
. L1VROB_01 > M inflightTransactions [*signal.Transaction 31 =0 writethrough. (*Cache)
<00 rog. ‘SeorgerBu;;er)A_rr\
* L1VROB—O2 >storage gitlab.com/akita/mem/v? " gggﬁ ‘Scioerdarerfmelr)'&
(Pl
. LIVROB_03 D. Simulation Monitoring <o writethrough,(*Cache)
> subTransSplitter gitlab.com/ ~oo tracing TraceReqRece!
. L1VTLB_00 00 aggress:ranslaiorﬁtﬁg
- . ©0 addresstrans|ator.
. L1VTLB_O1 > subTransactionQueue gitl e 20 u.(*VectorMemoryUr

11\UTIR N2

FANDArE il it ot it | etk ek e ok

x GPU1.DRAM_O.inflightTransactions

45
40
35
30
25

»x GPU1.DRAM_1.inflightTransactions

20

15
10
5
0

<00 writethrough. (*coalesce). piuiessneyrasunvvavewvale

x GPU1.DRAM_2.inflightTransactions »x GPU1.DRAM_3.inflightTransactions

gg i \ilw \IM], H‘ I M m ! I“'l
0 F. Simulation Value Monitoring

@

N
3

0.

At GPU1.CommandProcessor.Dispatcher0, Kernel: 15, o

0. e — e — - .-~ 04000420043

64 24997

G. Simulation Progress Monitoring

Fig. 2. Screenshot of AkitaRTM with labels for each major view. Other than the A. Resource Monitoring and E. Simulator Profiling, all views focus on

examining the properties of the system under simulation.

processes running on a system. This view is always present
and self-refreshing, permitting real-time monitoring.

Simulation controls. The simulation controls (Figure 2 C)
allow computer architects to pause the simulation to inspect
other views or to simply release CPU resources to a different
simulation without aborting the current one.

The controls also show the progress in terms of simulation
time. Should this value stop updating, it may indicate a
hang (task T3). The speed at which it updates also indicates
simulation performance in the absence of hangs (task T4) and
can be used to estimate how long the simulation will take in
real time (task T1).

Simulation profiling. The functionality of profiling the
simulator itself (not the workload under simulation) is built-in
to AkitaRTM (task T4).

Profiling data is captured using pprof [16] at a configurable
interval at the granularity of function calls. The top-N (V is
decided by pprof) functions that take the longest execution
time are sent to the webpage to be visualized. These functions
are then shown in the right panel (Figure 2 E) with arcs
showing their calling dependencies. We choose a vertical arc
diagram [25] to promote the visual search of time-consuming
functions (red) over the topology of function calls. Identifying
the most time-consuming functions is the most frequent sub-
task for performance debugging. Following function calls can
be helpful, but not always.

Each row in the diagram is one function. Two color-coded

squares OO0 are displayed on the left of the function, showing
its “self time” (time spent in only itself) and “total time” (all
time taken, including by calls to other functions). These two
properties are standard for performance profiling.

Arrows represent which function calls another, with ar-
row thickness representing time spent. Thus, the most time-
consuming calls, which are most interesting to performance,
are the most salient.

Simulation progress monitoring. At the bottom of the Ak-
itaRTM interface is a region for progress bars, supporting task
T1. Each bar is labeled (left) and has three segments, green,
blue, and gray, which represent finished, currently executing,
and not started tasks, respectively. For example, we show
the number of thread blocks that are completed/ongoing/not-
started to represent the progress of the kernel. Developers
can call AkiteRTM’s API to specify other progress bars (e.g.,
number of algorithm iterations and number of bytes copied in
a memory copy operation). So far, we always require all three
categories (completed/ongoing/no-started) of task counts. We
will add support for unpredictable counts of not-started tasks
when we observe the need.

2) Hardware Performance Analysis View: In addition to the
views focusing on the simulation health, AkitaRTM supports
the initial analysis of the simulation output.

Simulation status monitoring. Beyond the initial health
checks of CPU and memory usage, AkitaRTM allows archi-
tects to dive deeper into the status of simulation components

Sort by: B4 Stop Refresh

Buffer Size Cap
GPU[1].SA[15].L1VROB[0].TopPort.Buf 8 8
GPU[1].SA[5].L1VROB[1].TopPort.Buf 8 8
GPU[1].SA[13].L1VROB[1].TopPort.Buf 8 8
GPU[1].SA[13].L1VROB[2] . TopPort.Buf 8 8
GPU[1].SA[13].L1VROB[3].TopPort.Buf 8 8
GPU[1].SA[1].L1VROBI[1].TopPort.Buf 8 8
GPU[1].SA[14].L1VROB[2].TopPort.Buf 7 8
GPU[1].SA[7].L1VAddrTrans[1].TopPort.Buf 4 4
GPU[1].SA[2].L1VCache[0].TopPort.Buf 4 4
GPU[1].SA[3].L1VAddrTrans[0].TopPort.Buf 4 4
GPU[1].SA[3].L1VCache[0].TopPort.Buf 4 4
GPU[1].SA[3].L1VCache[1].TopPort.Buf 4 4

Fig. 3. Showing the buffer analyzer as a table of the most occupied buffers. If
the “flag” button is clicked, this table replaces the profiling visualization in the
right panel of the interface shown in Figure 2 E. In this example, the Level 1
Cache’s Reorder Buffer (L1VROB) is likely to be related to the performance
bottleneck.

Component A Component B Component C Component D

Fig. 4. A simplified demonstration showing why buffer fullness is an easy
indicator of performance bottleneck. In this example, Component C is likely
to be the performance bottleneck.

and even variables as well as controls to possibly debug either
simulation performance issues (task T4) or simulated hardware
performance issues (task TS).

The left-most panel (Figure 2 D) provides on-demand
information regarding simulation internals. Combined with the
simulation controls (Figure 2 C), which allow pausing the
simulation, a computer architect can check any value within
the simulation at any point in the simulation.

To help users navigate the large amount of possible data for
inspection, the monitoring view displays a hierarchical view of
the hardware components being simulated. This view can be
expanded or collapsed to see further sub-components. Select-
ing a component or sub-component will show details of prop-
erties (variables) in the components, such as their name, type,
and value (or multiple values if they are container properties
like lists and dictionaries) if applicable. This functionality is
similar to gdb-like debuggers [15], but made more accessible
and convenient through the hierarchical presentation.

Bottleneck analysis. Bottlenecks in the hardware are often
related to buffer capacities. AkitaRTM provides insight into
buffer levels during the simulation through a buffer panel (Fig-
ure 3). The panel replaces the profiling panel when clicking
the green “post” icon. This view helps computer architects
understand simulated hardware performance (task TS).

To understand why buffer fullness can identify perfor-
mance bottlenecks, we consider a chain with four components
(see Figure 4) where each component delegates tasks to the
next-level component. Figure 4 reasonably represents how
hardware components are connected like caches in a memory

hierarchy. Here, Component B does not have a full buffer,
suggesting it can convert requests from A to requests to C
at a reasonable rate. Similarly, D does not have a full buffer,
suggesting that D can fulfill requests from C. Therefore, the
only reason the whole chain of components cannot process
requests faster lies in Component C. In actual simulations,
the connections can be more complex, and hence, a formal
performance analysis is still necessary [40]. However, the
buffer-fullness-based analysis provides a lightweight method
to identify potential bottlenecks.

The buffer panel lists the most occupied buffers, suggesting
potential bottleneck points. When this panel is first shown, a
snapshot of all the buffers in the simulation is taken and sent
to the website frontend. Users can select to sort the buffers
by their fullness percentage or by the number of elements
stored in the buffer. Being repeatedly placed at the top of the
list strongly suggests that a component is a bottleneck. If the
user determines that the component is not supposed to be a
performance bottleneck, the simulation can terminate early to
allow updating the configuration.

Simulation value monitoring. While the Simulation Mon-
itoring Panel (Figure 2 D) and the Buffer Panel (Figure 2 E)
show instantaneous status, AkitaRTM also supports tracking
individual values of the hardware under simulation over time.
The simulation value monitoring view (Figure 2 F) plots up
to five individual values over time.

The monitoring plots support a wide range of data types.
The plot uses the variable’s value for numerical types (e.g.,
integer, floating point numbers). For containers such as lists
and dictionaries, the plot shows the container sizes, which
usually represent meaningful values such as the number of
transactions in a set of Missing Status Holding Register
(MSHR) or the number of transactions processed by a cache.

The simulation value monitoring is achieved by periodically
sending status lookup requests to the simulator to query the
value. We designed it to keep only the most recent 300 data
points, considering that the client’s memory is usually limited.

This detailed monitoring allows users to monitor the chang-
ing fullness of a buffer of interest. In case of performance
problems, users can then perform more targeted post-hoc
analysis, essentially starting with a “smaller haystack” for
needle-in-a-haystack performance problems.

V. CASE STUDIES

We describe two case studies, performed by one of the
authors, demonstrating real-world use cases for AkitaRTM and
the tasks and features we identify.

A. Case Study 1: Performance Analysis with AkitaRTM

This case study uses the Image-to-Column Conversion
(im2col) benchmark [46]. The im2col algorithm is a critical
building block for Convolutional Neural Networks (CNNs)
as it converts a 2D image convolution operation into matrix
multiplications. We set the problem parameters with 24 x 24
images with six feature map channels. The batch size is 640.

This specific simulation was configured to run on a multi-
chip module GPU [4] with four chiplets. Each chiplet is
equivalent to an AMD Radeon R9 Nano GPU, which is the
default configuration of MGPUSim. Specifically, each chiplet
has 64 compute units (CUs), 16KB dedicated L1 cache per
CU, 2MB shared L2 cache, and 4GB HBM memory.

While the selected problem and hardware configuration may
not cover all the cases, the goal of the case study is to
demonstrate the capability of AkitaRTM. In this case study,
we monitor the simulation and locate possible bottlenecks that
may occur in such an intensive workload.

Initial simulation assessment. The first step in the case
study is to ensure the simulation was successfully started. The
progress bar (see Figure 2 G) and timer (see Figure 2 C) on
AkitaRTM verified that the simulation had begun progressing.
Smoothly moving progress bars and the updating timer suggest
that the simulation progresses appropriately.

Bottleneck identification. After the normal execution status
is confirmed, the next step is to determine if there are perfor-
mance bottlenecks and identify them. To do this, the bottleneck
analyzer was repeatedly refreshed, and it was noticed that the
L1-VROB (Level 1 Vector Re-Order Buffer) component had
a consistently high size-to-capacity (e.g., 8:8) ratio, indicating
that the system is not able to process memory request going
through the ROB fast enough.

To further investigate this hypothesis, we monitor the value
of the size of the buffer over time to observe how it changes.
Using the Component Selection panel and the location pro-
vided in the Analyzer, the component information for an L1-
VROB was obtained in the middle panel. Navigating to the
buffer metric and clicking on the flag icon next to the “size”
value of the buffer, launched a time graph (see Figure 5 (¢)), al-
lowing us to monitor the size over time. With a given capacity
of 8, the cache exhibited constant fullness with no dips in size.
The fact that there is no variance in size demonstrates that the
L1-VROB is constantly filled. We can confidently conclude
this is related to a performance bottleneck.

Considering the nature of a reorder buffer, we know it does
not have a concept of “processing speed” in the traditional
sense, as inserting and removing transactions from such a
buffer is almost immediate. We hypothesize this performance
bottleneck is due to either the reorder buffer not being large
enough or the other components that process memory requests
not being fast enough.

To test the first hypothesis, we first check how many
transactions are there in the reorder buffer. Note that this
is a different value from the number of transactions in the
ROB’s top port. As shown in Figure 5 (b), the top port holds
transactions to be inserted into the reorder buffer. To check the
number of transactions currently being handled by the reorder
buffer, we use the Component Selection Panel, find the reorder
buffer, and click the flag icon next to the transactions
field. The monitoring graph is shown in the top-left figure
in Figure 5 (d).

The number of transactions in the reorder buffer fluctuates
between 70 and 130. Even without checking the capacity

specified in the configuration, we know the buffer size is not
likely to be fully exploited as the value does not stay at a
certain level. If the reorder buffer is full, the value will stay
at the capability for a prolonged duration.

Next, we investigate the second hypothesis by looking at
other components. Using the Component Selection Panel to go
further down the hierarchy (see Figure 5 (a), we monitor the
transactions of other related hardware components, including
the Address Translator, L1 Cache, and the RDMA engine
(see Figure 5 (d)).

The Address Translator and the L1 Cache show different
patterns. The Address Translator is not likely to be a per-
formance bottleneck because we can see high peaks turning
flat within a short duration, suggesting it has a reasonable
processing speed. The L1 cache shows an alarming pattern
of being constantly maxed out at 16 transactions. This typ-
ical pattern shows that the component is limited by specific
resources (MSHR in this case).

Moreover, as we check the RDMA engine, we find that
the number of transactions is also at an alarmingly high level
(about 1000 transactions). These are inflight transactions gath-
ered from the L1 caches and waiting for a remote GPU chiplet
to provide the data (or write acknowledgment). The high
number suggests that the RDMA (or the network connecting
the RDMAs) will likely be a performance bottleneck.

B. Case Study 2: Debug a Hanging Issue

In this case study, we demonstrate how to debug a hang.
This case study is also performed by one of the authors
who knows MGPUSim well. The bug is an actual bug in
MGPUSim, discovered while using AkitaRTM, and the so-
lution has since been merged into the MGPUSim open-source
repository. As we will see, debugging a hanging issue requires
using most parts of AkitaRTM together.

We describe the problem first to help readers follow the
case study, but we did not know the problem before the
case study was performed. The problem originates in the L2
cache implementation. The L2 cache in MGPUSim has a write
buffer that temporarily buffers evicted data to be written to
the DRAM. The data that is fetched from the DRAM also
go through the write buffer before they can be written to the
local storage. So, at a certain time of simulation, the local
storage wants to send a transaction to the write buffer to
evict. Meanwhile, the write buffer wants to send a piece of
fetched data to the local storage. However, since the local
storage cannot free up the eviction transaction, it cannot take
the fetched data, causing deadlock.

Starting the simulation. Before the debugging session
starts, we have already experienced the issue that the sim-
ulation never finishes. Therefore, we suspect it is a hang
due to a bug somewhere and take the standard procedure to
solve the hanging bug. Since we are dealing with a hang, we
start the simulation with a GDB-style debugger (d1v [41] for
Go). Starting the simulation with a debugger does not change
AkitaRTM’s appearance.

+ |Compute Compute| 2 B From
5o Unit Unit G g Co'mpute
s =] I o Unit
ROB | [RroB_| Top Port
d , ROB
m Address Address m
| |Translator Translator | |2 ROB
3 3 Transactions
L1$ <Et L1$
Q I =0 |2 25 | |9 To Address
b~ 1 =22 i~ Translator
-] (oram] §° [_oRAm] |2 v

(b) The local structure of
the reorder buffer (ROB)

» GPU[1].SA[0].L1VAddrTrans[0].transactions

(a) Memory hierarchy in MGPUSIim

% GPU[1].SA[0].L1VROB[0].transactions.len

000210 0,00215 000220 0.00225 0.00230 0.00235 0.00240

0.00210 0,00215 000220 0.00225 0.00230 0.00235 0.00240

GPU[1].SA[8].L1VROB[0].topPort.buf.elements

8
7
6
5
4
3
2
1
0
0

000030 0.000040 0.000050 0.000060 0.000070 0.000080 0.000090 0.000100 0.000110 0.0001

(c) Monitoring the buffer level of the ROB’s top port suggests
that it is full for an extended period.

% GPU[1].SA[0].L1VCache[0].transactions % GPU[1].RDMA transactionsFrominside

000210 0,00215 0.00220 0.00225 0,00230 000235 0.00240

000210 0.00215 0.00220 0.00225 0.00230 0.00235 0.00240

(d) Monitoring other components in the memory hierarchy suggesting that the RDMA is causing performance issues as there is constantly a

large number of transactions.

Fig. 5. The case study that demonstrate performance analysis of the Image-to-Column (im2col) workload running on a 4-chiplet GPU hardware. In (c),
we monitor the buffer fullness of the reorder buffer’s (ROB) top port’s buffer, identifying performance bottlenecks related to the components that drain the
ROB. By monitoring the transaction level of connecting components (see (d)), we notice the high transaction level in the RDMA engine, confirming that the
processing capability (caused by the slow network) of the RDMA engine is the root cause of the performance issue.

Confirming the hang. Once the simulation started, we
observed the simulation progress smoothly for some time.
When the hang occurs, we observe that 1) the progress bars
(Figure 2 G) stop moving, 2) the time in the Simulation
Control (Figure 2 C) stops changing, and 3) the CPU usage
(Figure 2 A) falls to a level significantly less than 100%. Once
these states last for a few seconds, we are confident that the
simulation has entered a hang state.

Identify hanging components. The Bottleneck Analyzer is
our best friend in identifying hanging components. We click
the Bottleneck Analysis button to show the buffer level. If the
simulation is completed successfully, every component should
be idle, and all the buffers should be empty. If there is any
content in a buffer, we know the buffer owner cannot proceed
to process the requests. In this particular situation, we observed
that L1 caches, L2 caches, and DRAM controllers have buffer
contents. More components may have buffer contents than the
actually problematic components, which are caused by buffer
backpressure. We thus proceed to investigate further to rule out
components as the possible cause on the way to identifying
the true cause.

Identify the cause of the hang. Without AkitaRTM, a
programmer would typically need to set some breakpoints,
based on their experience, and restart the simulation, hoping
that the breakpoint they set can capture the hanging issue.
However, given the large search space, it usually takes a long
time and some luck before the best breakpoint is set. With
AkitaRTM, programmers do not need to restart the simulation
and can solve the problem within the current context.

Using the buffer levels, we gained a list of potential com-
ponents that cause the hang. We can process them type by
type (L1 caches are one type, L2 caches are another type)
to see if they are problematic. We first set a breakpoint at

the first line of code in the Tick function (most of the
components in MGPUSim have such functions). We then
locate the component in the Simulation Monitoring Panel
(Figure 2 D). Since the component is not making forward
progress, MGPUSim puts it to sleep. We need to wake it up
by scheduling a Tick event in the next cycle. To do so, we

may click the Tick button , which is directly under the
Resource Monitoring Panel (Figure 2 A). In case the whole
simulation is not running, we would also need to use the “Kick
Start” button &8 in the Simulation Control Panel (Figure 2
C) to continue with the simulation.

Since the breakpoint is set, the execution will stop at the
first line of code of the Tick function. We can then execute
line by line to see why the component cannot make progress.
Using this method, we determine that the L1 cache and DRAM
controllers cannot make progress because they cannot send
messages to L2 caches. In L2 caches, we discover that the
local storage is not receiving or sending out transactions. The
whole process of identifying this bug took about 1.5 hours.
We estimate this time to be much shorter than our debugging
process without AkitaRTM.

Overall, the design of the “Tick” button facilitates debug-
ging the cause of hanging problems. This design supports
cycle-based simulation but does not yet support fully event-
driven simulation. To provide analogous functionality for
event-driven simulators, we could add a dropdown menu for
all the events the component can handle and change the “Tick”
button to a “Schedule” button to schedule the selected event.

C. Beyond the case studies

Throughout the case studies provided, we have demon-
strated how a majority of the elements of AkitaRTM can be
utilized to solve real-world problems. Other elements, such

as the play/pause/jumpstart (Figure 2 C), were not highly
utilized in these case studies but are used in regular practice.
Specifically, the simulator controls allow for “slowing down
time” in the simulator to try to catch specific instances of
component ticks. The value monitoring tool (Figure 2 D)
allows for time-series visualization of task execution, and thus,
events like filled buffers may be more visible. The profiling
section (Figure 2 E) allows for identifying which function
call hierarchy may be problematic. We believe all elements
of AkitaRTM are important to getting the full picture of a
simulation.

VI. EVALUATION

The above case studies gave an expert-focused view of
the possibilities of AkitaRTM. To broaden our understand-
ing of the effectiveness of AkitaRTM across possible users,
we conducted a user study with six computer architecture
researchers. As a qualitative study, our goal is not to draw
statistical conclusions but to derive meaningful themes and
patterns from members of the target audience and inform
further research and development. Qualitative studies require
fewer participants than quantitative studies, as the depth of
data from each participant is the more significant aspect than
its numeracy [9]. This study was approved by the Institutional
Review Board at our institution.

A. Method

We conducted evaluation sessions with participants to better
understand the efficacy of AkitaRTM.

Format. Each evaluation session was conducted individ-
ually with each participant through a virtual conferencing
platform (e.g., Zoom). The study consisted of 5 distinct parts:

1) Participants were given a demonstration of AkitaRTM
with MGPUSim running the Image-to-Column Conver-
sion (im2col) benchmark, the same as used in the first
case study.

2) A simple simulation was provided to them using the
“Finite Impulse Response” (FIR) benchmark. The par-
ticipant used AkitaRTM while sharing their screen.
No specific performance issues or complexities were
added to this trial. The purpose was for the participant
to become more comfortable with AkitaRTM and ask
questions about it.

3) While still sharing their screen, participants were given
a problematic “Image 2 Column” simulation (with mul-
tiple bottlenecks and performance issues) to observe
whether they could identify these issues. We did not
answer any questions they had about AkitaRTM. We
expected participants to identify bottlenecks at the ROB
level and to mention that these issues may cascade down
to other connected components.

4) A brief semi-structured interview was conducted regard-
ing their experience with AkitaRTM.

5) A short post-study survey was administered to gauge the
success of AkitaRTM across pre-defined criteria.

Participants Recruitment. Participants were recruited us-
ing convenience sampling (i.e., using participants “‘convenient”
to researchers) methods by reaching out directly to individuals
via online messaging systems (e.g., Slack) in academia and
with ties to the field of computer architecture. Of these, the
participants who accepted the invitation and appeared in this
study are colleagues of or affiliated in some way with one or
more of the authors of this paper. Participants were not paid
for their time. We refer to participants by code, PT{1-6}.

Among our participants, 3 are currently Ph.D. students
(PT2, PT3, PT4), and 3 are undergraduate students who
actively conduct computer architecture research (PT1, PT5,
PT6). Four participants (PT2, PT3, PT5, PT6) had prior
experience with AkitaRTM before participating in our study.

Analysis Method. The online meetings were recorded, and
transcripts were generated. The first and the last authors open-
coded the transcript together to find themes, referring to the
recordings when the transcripts were unclear. Findings from
this analysis are presented in the Results section.

B. Results

We first describe overall feedback and task performance in
our results summary. Then, we discuss observations, notions,
and points of view derived during open coding. Finally, we
present the findings of the follow-up survey.

1) Summary: The overall response to AkitaRTM was pos-
itive among all study participants. During the evaluation
sessions, the feature used the most by all participants was
the Bottleneck Analyzer, while the least used feature was the
Profiling panel. Concerning both the design and informative-
ness of AkitaRTM, users mentioned many successes of the
tool while highlighting important critiques that can be learned
and iterated upon for future releases.

Regarding whether the participants were successful in iden-
tifying bottlenecks in the third part of the sessions, PT3, PT4,
and PTS5 all identified proper bottlenecks in the system during
the third portion of the study through primarily a mix of the
Bottleneck Analyzer and Time Charts. They can identify the
problem in the ROB and the RDMA engine.

2) Themes derived in open coding: We discuss findings de-
rived during open coding of the evaluation sessions, including
comments made during the demonstration, during participant
use of AkitaRTM, and during the semi-structured interview.
These have coalesced into themes regarding what AkitaRTM
is: (1) a companion, (2) a different perspective, and most
interestingly, (3) a learning tool, as well as a discussion of how
AkitaRTM can be improved for new users, similarly identified
through the evaluation sessions.

AKitaRTM is a companion. This theme demonstrates that
users engaged with AkitaRTM in a way that matched the initial
impetus for creating AkitaRTM. Despite being given such a
complex tool without much time (i.e., multiple days or weeks)
to learn about it, all participants had fluidity in navigating the
tool quickly on their own without much guidance.

The word “companion” is meant to underscore the impor-
tance of AkitaRTM not being a standalone tool; it provides

an avenue for in-situ debugging (as demonstrated in the case
study above). PT2 and PT3 both had more experience in
computer architecture development than other participants and
thus were able to take the fullest advantage of all of the
features AkitaRTM had to offer. Instead of solely relying on
our demonstration to guide their exploration, they clicked on
multiple different components in the Component Selection
panel while analyzing the different values included on a
component in which a bottleneck could occur.

AkitaRTM is a different perspective. On a similar no-
tion to the theme of companionship, we strived to develop
AkitaRTM with the idea of a differing perspective in mind.
While this primarily came in the form of being able to define
locations of bottlenecks in real time, such a requirement was
ultimately deemed the most useful aspect of the tool by
participants. For example, PT2 mentioned that they would
use AkitaRTM, in reference to any computer architecture
simulations they run, to see where the bottleneck is...to see
why [they] are achieving a low or high bandwidth [in the
component buffers]”. PT5 mentioned that AkitaRTM provided
a “useful list of all the components...there are a lot of compo-
nents so [the tools] allow [them] to find bottlenecks and other
problems”. Post-hoc analysis software has the detriment of not
being able to accurately display times when a simulation may
have hanged or may not even be accessible if a simulation
crashes completely mid-execution. Participants enjoyed being
able to see the events and component values leading up to
bottlenecks and problematic simulation portions. PT4 was even
able to observe the simulation during the third part of the study
hang properly and used the opportunity to use the tool and
gain more insight into where the hang might occur. Post-hoc
analysis methods display a lot of information that can be sorted
through, but it is hard to pinpoint an exact location, as specific
data points may easily be overlooked. The fact that AkitaRTM
is able to embody this theme well plays to the strength of the
design of such a real-time tool.

AkitaRTM is a learning tool. The most unexpected theme
that arose from participants (specifically PT1 and PT6, who are
undergraduate researchers) was how AkitaRTM helped not-as-
experienced members learn more about computer architecture.
While the prior two themes highlight AkitaRTM as a way
for experienced computer architects to gain insights into their
current simulations, this theme highlights the potential the
design has in being an educational tool, something we did
not anticipate.

While PT1 and PT6 were unable to successfully identify
the issues in the problematic simulation provided, they each
gained insight into how the GPU was executing the simulation.
PT6 spent most of the study duration asking questions about
the inner workings of the simulation and monitoring tools,
as well as drawing hierarchical connections between all of
the GPU’s components. They mentioned towards the end of
the study how “the comparison between [the time] plots here
are very helpful in finding links between components.” These
experiences solidified that the design choices for AkitaRTM
are robust and helpful enough to be used to grasp even initial

Strongly Strongly
Questions: Disagree Disagree Neutral Agree Agree

1. AkitaRTM is easy to learn 3 3
2. Progress bars are helpful 2 4
3. Component details are helpful 1 1 4
4. Time graphs are helpful 1 5
5. | can identify perf. issues 1 2 3
6. The profiling tool is helpful 1 1 4

Fig. 6. Distribution of responses to post-study survey statements. Question 4
had the highest average score (4.8), while Question 6 had the lowest (4.2).

concepts about the hardware the simulation is being run on.
Even for other participants who were more versed in computer
architecture, the tool prompted discussions about how the low-
level hardware executing the simulations worked.

AkitaRTM can be improved with guidance for new
users. While sentiment towards AkitaRTM was largely posi-
tive, the data generated by our user study also suggests several
areas for improvement. By far, the most voiced sentiment
was that AkitaRTM is hard to get started on individually,
as participants noted that unlike in the study, most potential
users are not given a demonstration of how to use a given
software and must learn it on their own. Though arguably a
noticeable flaw, the current concept for AkitaRTM was geared
at providing a design that can support the tasks we identified.
Future iterations of AkitaRTM may want to focus on the
interface’s discoverability and accessibility.

The other critiques were similar but focused on more indi-
vidually explainable Ul elements. PT1, PT3, PT4, and PT6 all
suggested that some of the buttons have more intuitive icons.

Especially with the Bottleneck Analyzer , participants
noted that the button was too much like the value monitoring

button (the flag that opens the time graph H) and did not relate
much to the function of the button. Similarly, PT4 wished
for more “flow between all the features” or indicators of
cohesiveness between the tools. These concerns further point
to the need for more guidance for individual first-time users.

C. Post-Study Survey

In the follow-up survey, participants were asked to rank six
statements on a scale of 1 (low) to 5 (high), correlating to how
much they agreed with the statement. The statements were:

1) AkitaRTM is easy to learn.

2) The progress bar helped me understand if the simulation
is making progress and have a brief estimation about
when the simulation will finish

3) The component details allow me to check critical sta-
tuses of the simulation

4) The component time graphs helped me trace how some
parameters change over time

5) I can identify the performance issues of the software or
hardware under simulation

6) The integrated profiling tools allow me to find the
performance bottlenecks of the simulator.

I No Monitoring [Monitoring, browser

I Monitoring, no browser] Monitoring, browser w/ clicks
15

100
o)
E
l_ I
BitonicSort KMEANS MatrixTrans SPMV
Fig. 7. Comparing the execution times of simulations with and without

AkitaRTM. The performance overhead of AkitaRTM is negligible.

Figure 6 shows the distribution of the responses. Given a
sample size of six completed surveys, the average response
between all statements was 4.5, with an average standard
deviation of 0.77. Most notably, question (3) had the highest
response average of 4.8. While the sample size is small,
these results suggest the viability of AkitaRTM as a tool. We
were unable to follow up with the participant who disagreed
with the profiling tool being helpful due to the survey being
anonymous.

VII. PERFORMANCE EVALUATION

We assessed AkitaRTM’s performance by simulating six
benchmarks from MGPUSim, selecting problem sizes that
fully engage all cores in MGPUSim’s default configuration.
Our evaluation encompasses four distinct scenarios: 1) Ab-
sence of monitoring, where the monitor is not activated; 2)
Monitoring enabled without a browser interface, meaning the
monitor operates in the background without handling HTTP
requests; 3) Monitoring with a passive browser interface,
where the monitor and browser window are active but without
user interaction, allowing only time and progress indicators to
update; and 4) Active monitoring with simulated user interac-
tions, where the tool is in full operation, and elements within
the component list receive automated clicks at one-second
intervals via JavaScript to mimic regular user engagement with
AkitaRTM. Each benchmark and scenario combination was
executed five times to get the average performance.

Overall, we see no major performance overhead when
using AkitaRTM (see Figure 7). The highest performance
overhead is 3.7% observed in the FIR benchmark. For a
few other benchmarks, the performance overhead is within
the noise range. The low overhead also suggests that when
many simulations run parallel on one machine, AkitaRTM
will not slow the overall simulation process. We attribute
the low overhead to three design choices: 1) AkitaRTM only
performs actions on-demand to respond to frontend requests.
When there are no requests, AkitaRTM’s code will not run.
2) AkitaRTM serializes in fine granularity. AkitaRTM only
serializes one component or value on each front-end request.
Fine serialization granularity also avoids the requirement for
global synchronization. And 3) AkitaRTM runs in a dedicated
thread, parallel to the main simulation thread. Therefore, its

execution will minimally interfere with the main simulation
thread execution.

VIII. DISCUSSION

We contend that advancing computer architecture research
necessitates a human-centered approach, in addition to techni-
cal perspectives. The true effectiveness of these tools is real-
ized only when they are designed with the user’s understanding
in mind. By developing tools that are intuitive and accessible to
researchers, we can significantly enhance their ability to make
informed decisions. In the following section, we summarize
our key learnings, which may have broader applicability in
developing future computer architecture tools.

Many small steps forward are a big step forward. Aki-
taRTM can be considered a data aggregation and visualization
tool. It collects real-time data from a simulation and displays
the data in an easy-to-process way on the interface.

While most of the features in AkitaRTM can be achieved by
other methods, AkitaRTM reduces barriers and makes difficult
tasks easier. For example, the progress bar can be printed in
the terminal, and the simulation monitoring feature can be
achieved with a regular breakpoint debugger. However, by sim-
plifying all the processes, AkitaRTM significantly improves
the user experience and workflow. Our collaborators told us
they started to establish a habit of profiling the simulator.
Previously, they would only profile the simulator every half
a year, but now, because the feature is so accessible, they
profile it daily to weekly, and performance bugs are solved as
new features are added. While GDB can be used to debug
simulation hangs, developers need to repeatedly restart the
simulation and recreate the hanging scenario, spending days to
weeks. AkitaRTM allows trigger component ticking, recreating
the site in seconds, thereby saving developers significant time
or engineering work so that they can focus more on research.

Focusing on side workflows. Existing workflow task anal-
ysis methods [13] mainly focus on the main tasks. While
some methods [2], [48] add more emphasis on the context, the
main workflow is still the leading factor that determines the
design rationale. For computer architecture design, the main
task for architects usually focuses on identifying performance
bottlenecks and comparing two designs. However, beyond the
main tasks, the workflow of computer architecture researchers
includes many other items, e.g., simulator debugging and
ensuring the simulator performance. While addressing their
main needs is important and needs formal solutions [20],
[40], our experience in AkitaRTM suggests the importance
of developing tools for users’ side workflow.

AkitaRTM is a tool that focuses on the side workflow.
This nature determines the unique design decisions made
within AkitaRTM. For example, since there is no single most
important task in the side workflow, we take a dashboard-
like [42] design by laying out all the content in one interface.
Also, the first priority of designing the performance analysis
feature is to provide quick, real-time feedback rather than the
accuracy of identifying performance bottlenecks. Overall, the

design of AkitaRTM may inspire future designs of similar
tools that focus on facilitating the side workflow of users.

Considering human-centered methods in the tool-design
process. Computer architecture tools are designed to be used
by human researchers. While the technical perspective is
crucial, human factors may also be considered. Recent re-
search has provided more tools that bridge simulation tools
with human users [3], [40]. Our research suggests that the
following aspects may be considered in future tool-designing
projects: 1) a user-based requirement collection processes, 2)
task definitions that consider users’ needs, and 3) user-based
evaluation, quantitative or qualitative.

Limitations of AkitaRTM. AkitaRTM offers the possibility
of opening the black box of computer architecture simulators.
However, as one of the first tools of its kind, there are still
several limitations.

One major limitation is rooted in the nature of AkitaRTM,
where all the data are collected and displayed in real-time. For
example, the bottleneck analyzer can only hint at the location
of bottlenecks but cannot give a more definitive answer. Should
this limitation become a high-priority barrier to users, we
could address it by incorporating more data and more views
(e.g., real-time achieved throughput of ports, graph-based view
hardware connections) in the future.

Another set of limitations is caused by the learning curve
and the requirement of knowledge of the hardware. We
observe that users often struggle with understanding how
hardware components are connected and require help finding
the connecting components. AkitaRTM is designed for expert
users, especially those who design the simulated system and
thus intimately know the configuration. However, we believe
having a more intuitive interface (e.g., showing a map of
how components are connected) would significantly reduce
the difficulty and improve the usability of AkitaRTM.

IX. CONCLUSION

Looking inside the “black box” of computer architecture
simulators and monitoring real-time execution status helps
accelerate the research process. Enhancing the usability and
interoperability of such tools cannot be addressed solely from
a technical perspective but should also be from a human-
computer interaction perspective. This paper proposes an ini-
tial attempt to address the opaqueness of simulators that benefit
users with an easy-to-use interface.

AkitaRTM is a monitoring tool for a popular GPU archi-
tecture simulator, MGPUSim. AkitaRTM supports monitoring
the hardware resources and simulation progress, debugging
simulation hanging issues, identifying performance bottle-
necks, and profiling the simulator itself. AkitaRTM has been
demonstrated to be helpful in computer architecture design,
thanks in part to our identification of essential tasks performed
by computer architecture researchers. We see AkitaRTM as
an essential step towards building explainable computer archi-
tecture (XCA) by helping computer architecture researchers
to better understand the intermediate states of simulations.
AkitaRTM can potentially avoid asking simulator users to wait

for the simulation to fully complete by terminating simulations
early to make necessary modifications. Moreover, the design
of AkitaRTM sheds light on future simulator development to
make simulators humanly understandable through real-time
monitoring tools.

ACKNOWLEDGMENT

We thank all the anonymous reviewers who have provided
constructive feedback leading to the enhanced quality of this
paper. We also thank our participants for testing AkitaRTM
and telling us their opinion on this tool. This work is supported
by the National Science Foundation (NSF) under award CNS-
2234400, CNS-2234401, OAC-2246035, and CCF-2402804.
This work is also supported in part by AMD.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, A. Gentile, S. Lefantzi, S. Monk,
J. Ogden, M. Rajan, and J. Stevenson, “Continuous whole-system
monitoring toward rapid understanding of production hpc applications
and systems,” Parallel Computing, vol. 58, pp. 90-106, 2016.

[2] J. Annett, “Hierarchical task analysis,” Handbook of cognitive task
design, vol. 2, pp. 17-35, 2003.

[3] A. Ariel, W. W. Fung, A. E. Turner, and T. M. Aamodt, “Visualizing
complex dynamics in many-core accelerator architectures,” in 2010
IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS). 1EEE, 2010, pp. 164-174.

[4] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module
gpus for continued performance scalability,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 320-332, 2017.

[5] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G.
Rogers, “Principal kernel analysis: A tractable methodology to simulate
scaled gpu workloads,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO °21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
724-737. [Online]. Available: https://doi.org/10.1145/3466752.3480100

[6] ——, “Principal kernel analysis: A tractable methodology to simulate
scaled gpu workloads,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2021, pp. 724-737.

[71 A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE international symposium on performance analysis of systems and
software. 1EEE, 2009, pp. 163-174.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1-7, aug
2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[9] R. Budiu, “Why 5 participants are okay in a qualitative study,

but not in a quantitative one,” 2021. [Online]. Available: https:

//www.nngroup.com/articles/5-test-users-qual-quant/

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level

of abstraction for scalable and accurate parallel multi-core simulation,”

in Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 2011, pp. 1-12.

J. Cubero-Cascante, N. ZurstraBen, J. Noller, R. Leupers, and J. M.

Joseph, “parti-gem5: gem5’s timing mode parallelised,” in International

Conference on Embedded Computer Systems. Springer, 2023, pp. 177-

192.

S. Deublein, B. Eckl, J. Stoll, S. V. Lishchuk, G. Guevara-Carrion,

C. W. Glass, T. Merker, M. Bernreuther, H. Hasse, and J. Vrabec, “ms2:

A molecular simulation tool for thermodynamic properties,” Computer

Physics Communications, vol. 182, no. 11, pp. 2350-2367, 2011.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0010465511002025

D. Diaper and N. Stanton, “The handbook of task analysis for human-

computer interaction,” 2003.

O. C. Eidheim, “Simple-web-server: a fast and flexible http/1.1 c++

client and server library,” Journal of Open Source Software, vol. 4,

no. 40, p. 1592, 2019.

[10]

[11]

[12]

[13]

[14]

https://doi.org/10.1145/3466752.3480100
https://doi.org/10.1145/2024716.2024718
https://www.nngroup.com/articles/5-test-users-qual-quant/
https://www.nngroup.com/articles/5-test-users-qual-quant/
https://www.sciencedirect.com/science/article/pii/S0010465511002025
https://www.sciencedirect.com/science/article/pii/S0010465511002025

[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Freeman, “Using the go tools,” in Pro Go.
35-57.

Google, “google/pprof: pprof is a tool for visualization and analysis of
profiling data.” [Online]. Available: https://github.com/google/pprof

K. Grochowski, M. Breiter, and R. Nowak, “Serialization in object-
oriented programming languages,” in Introduction to data science and
machine learning. IntechOpen, 2019.

A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost
in abstraction: Pitfalls of analyzing gpus at the intermediate language
level,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2018, pp. 608-619.
F. Giindling, “Simple c++ serialization & reflection.”
Available: https://github.com/felixguendling/cista

K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance visual-
ization.” EuroVis (STARs), 2014.

T. Issariyakul and E. Hossain, “Introduction to network simulator 2
(ns2),” in Introduction to network simulator NS2. Springer, 2009, pp.
1-18.

M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 473-486.

H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45-49, 2015.

J. Kosakowska and M. Schmidmeier, “Arc diagram varieties,” Contem-
porary Mathematics series of the AMS, vol. 607, pp. 205-224, 2014.
Y. Li, Y. Sun, and A. Jog, “Path forward beyond simulators: Fast and
accurate gpu execution time prediction for dnn workloads,” 2023.

C. Liu, Y. Sun, and T. E. Carlson, “Photon: A fine-grained sampled
simulation methodology for gpu workloads,” 2023.

J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+, arXiv preprint
arXiv:2007.03152, 2020.

S. Lucas, “The origins of the halting problem,” Journal of Logical
and Algebraic Methods in Programming, vol. 121, p. 100687, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$235222082100050X

F. Muioz-Martinez, J. L. Abellan, M. E. Acacio, and T. Krishna,
“Stonne: Enabling cycle-level microarchitectural simulation for dnn
inference accelerators,” in 2021 IEEE International Symposium on
Workload Characterization (IISWC). 1EEE, 2021, pp. 201-213.

M. Naderan-Tahan, H. SeyyedAghaei, and L. Eeckhout, “Sieve: Strat-
ified gpu-compute workload sampling,” in 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 224-234.

T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural
simulators considered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4-12,
2015.

Springer, 2022, pp.

[Online].

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “Astra-sim: En-
abling sw/hw co-design exploration for distributed dl training platforms,”
in 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 1EEE, 2020, pp. 81-92.

A. F. Rodrigues, G. R. Voskuilen, S. D. Hammond, and K. S. Hemmert,
“Structural simulation toolkit (sst).” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2016.

D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” ACM SIGARCH Computer
architecture news, vol. 41, no. 3, pp. 475-486, 2013.

H. SeyyedAghaei, M. Naderan-Tahan, and L. Eeckhout, “Gpu scale-
model simulation,” 2024.

H. Sharifi, O. Aaziz, and J. Cook, “Monitoring hpc applications in
the production environment,” in Proceedings of the 2Nd Workshop on
Farallel Programming for Analytics Applications, 2015, pp. 39-47.

W. Snyder, “Verilator and systemperl,” in North American SystemC
Users’ Group, Design Automation Conference, 2004.

Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellan, J. Kim, A. Joshi, and D. Kaeli,
“Mgpusim: enabling multi-gpu performance modeling and optimiza-
tion,” in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 197-209.

Y. Sun, Y. Zhang, A. Mosallaei, M. D. Shah, C. Dunne, and D. Kaeli,
“Daisen: A framework for visualizing detailed gpu execution,” in Com-
puter Graphics Forum, vol. 40, no. 3. Wiley Online Library, 2021, pp.
239-250.

The DELVE developers, “DELVE: A debugger for the go programming
language,” 2023. [Online]. Available: https://github.com/go-delve/delve
R. Toasa, M. Maximiano, C. Reis, and D. Guevara, ‘“Data visualization
techniques for real-time information—a custom and dynamic dashboard
for analyzing surveys’ results,” in 2018 13th Iberian Conference on
Information Systems and Technologies (CISTI). 1EEE, 2018, pp. 1-7.
R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in Proceedings of the
21st international conference on Parallel architectures and compilation
techniques, 2012, pp. 335-344.

O. Villa, D. Lustig, Z. Yan, E. Bolotin, Y. Fu, N. Chatterjee, N. Jiang,
and D. Nellans, “Need for speed: Experiences building a trustworthy
system-level gpu simulator,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
868-880.

D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob, “Dramsim: a memory system simulator,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 4, pp. 100-107, 2005.

H. Wang and C. Ma, “An optimization of im2col, an important method
of cnns, based on continuous address access,” in 2021 IEEE Interna-
tional Conference on Consumer Electronics and Computer Engineering
(ICCECE). 1IEEE, 2021, pp. 314-320.

Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 496-508.

Y. Zhang, K. Chanana, and C. Dunne, “Idmvis: Temporal event sequence
visualization for type 1 diabetes treatment decision support,” [EEE
transactions on visualization and computer graphics, vol. 25, no. 1,
pp. 512-522, 2018.

https://github.com/google/pprof
https://github.com/felixguendling/cista
https://www.sciencedirect.com/science/article/pii/S235222082100050X
https://www.sciencedirect.com/science/article/pii/S235222082100050X
https://github.com/go-delve/delve

	Introduction
	Background and Related Work
	Determining Monitoring Needs
	Design of AkitaRTM
	Technical Overview
	API Design
	View Design
	Simulation Monitoring Views
	Hardware Performance Analysis View

	Case Studies
	Case Study 1: Performance Analysis with AkitaRTM
	Case Study 2: Debug a Hanging Issue
	Beyond the case studies

	Evaluation
	Method
	Results
	Summary
	Themes derived in open coding

	Post-Study Survey

	Performance Evaluation
	Discussion
	Conclusion
	References

