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Abstract
High configurability of Network-on-Chip (NoC) in modern
System-on-Chip designs creates a major challenge: deliver-
ing high-performance interconnects within short time and
reliable verification. While automated tools have stream-
lined RTL generation, performance evaluation has become
the main bottleneck. We propose an end-to-end evaluation
framework centered on an AXI-compliant, cycle-level traffic
generator. The framework employs human-readable JSON
workloads to drive identical traffic into both SystemC and
RTL models, accelerating exploration at the SystemC level
while enabling fine-tuning of design at RTL level. It also intro-
duces a waveform replay mechanism that preserves transac-
tion semantics, maintaining initiator inter-arrival and target
service behavior. This enables reproducible workload-driven
evaluation and provides practical support for debugging,
even when RTL is encrypted. We demonstrate the frame-
work through three workflows: design exploration, cross-
abstraction simulation, and waveform replay. Collectively,
these capabilities enhance the NoC designer’s workflow, re-
ducing evaluation effort and enabling faster, more reliable
design closure.

Keywords: Network On Chip, Traffic Generation, RTL - Sys-
temC Cross Simulation, Waveform Replay

1 Introduction
In modern System on Chip (SoC) development, the inte-
gration of heterogeneous Intellectual Property (IP) blocks,
from general-purpose cores to domain-specific accelerators,
has surged, creating new challenges in designing scalable
and efficient on-chip communication fabrics. Recent SoCs
integrate tens to hundreds of diverse IPs, each potentially
demanding distinct performance, bandwidth, and latency
characteristics[12, 13] .

This diversity motivates the adoption of irregular network
on chip (NoC) topologies that can allocate resources appro-
priately to the needs of different IPs[11]. Beyond topology,
configurability expands across numerous parameters: buffer
depths, numbers of multiple outstanding transactions al-
lowed, etc., into a vast design space. This complexity makes
one-size-fits-all NoC solutions infeasible. Consequently, NoC

IP providers face the necessity of iterative design-release cy-
cles. Each release must be refined to reflect customer work-
loads. To satisfy customers, vendors must not only reduce
the number of iterations but also deliver designs with shorter
turnaround time (TAT).
To accelerate this process, we are employing a domain-

specific language for network description, the OPENEDGES
Architecture Description (OAD) and a compiler toolkit that
generates both synthesizable RTL and approximately-timed
SystemC[4] models. This enables fast network generation;
the bottleneck then shifts to performance evaluation and
verification of the generated networks.

Performance evaluation is especially challenging when
SoCs run diverse workloads. Addressing this requires modu-
lar traffic models and easily configurable performance tests
to support rapid, workload-specific exploration. Verification
is equally critical: even verified RTL may reveal corner-case
errors under customer-specific conditions. Since we release
encrypted IP, limited visibility makes debugging particularly
difficult.

Existing NoC simulators, such as gem5[5, 10], Garnet[1, 9],
BookSim2[7], Noxim[6], and OpenSMART[8] have been in-
strumental for architectural exploration. However, exist-
ing frameworks face two critical limitations. First, gener-
ated transactions do not comply with the industry-standard
AMBA AXI[2] protocol. While AXI specifies channel-based
handshaking for data transfer, current NoC simulators oper-
ate at packet or flit granularity. This fundamental mismatch
necessitates a legitimate translator to bridge existing simula-
tors with customer-ready RTL or SystemCmodels. Second, ir-
regular network generation is limited. Whereas existing sim-
ulators provide pre-configured regular topologies (meshes,
tori, rings), real-world heterogeneous SoCs demand arbitrary
irregular topologies. Table 1 compares these frameworks to
this work: our approach supports AXI-channel transactions
at the subsystem level, handles arbitrary topologies through
compilation toolkit.

To overcome these challenges, we have developed an end-
to-end evaluation framework on a cycle-level traffic
generator with four features. First, it provides an extensible
and intuitive interface for integrating new traffic models.
This enables fine-tuning of customer IP behavior, supporting
more accurate and workload-specific exploration. Second,
it supports human-readable JSON workload descriptions to
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Table 1. Comparison of NoC Simulation Frameworks

Simulator Cycle-Level Format SystemC Sim. RTL Sim. Irregular Topologies Traffic

gem5[5, 10] ◦ Packet

Needs
translation

Needs
translation

× System-level
Garnet[1, 9] ◦ Flit × System-level
BookSim2[7] ◦ Flit × Synthetic
Noxim[6] ◦ Flit × Synthetic
OpenSMART[8] ◦ Flit △ (limited) △ (limited) Synthetic
This work ◦ AXI ◦ ◦ ◦ Subsystem-level1)

1) System-level integration in progress

streamline scenario design and iteration. This allows de-
signers to generate diverse workloads quickly and to con-
struct a more refined parameter space, ensuring that cus-
tomer requirements are clearly reflected. Third, it enables
cross-abstraction simulation with SystemC model, offering
significant speedup in evaluation compared to RTL simu-
lation. Finally, the framework provides a waveform replay
mechanism that preserves transaction semantics including
initiator inter-arrival timing and target service latency. This
mechanism allows customer’s real workload-based perfor-
mance tests to be reapplied across alternative networks while
keeping endpoint behavior fixed, thereby simplifying perfor-
mance studies under realistic workloads. In addition, when
replayed on the same network, it reconstructs internal be-
havior in a cycle-exact manner, enabling debug localization
from boundary waveforms alone and thus accelerating the
verification process.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the architecture and design philosophy of
the framework. Section 3 demonstrates three representative
workflows: design exploration (Section 3.1), RTL–SystemC
cross abstraction simulation using identical traffic (Section
3.2), and waveform replay for reappliance of customer’s eval-
uation workloads (Section 3.3), highlighting wide coverage
of this framework’s functionality. Section 4 concludes the
paper by wrapping up the main contributions and outlining
future directions.

2 Architecture
This section presents the design philosophy and end-to-end
architecture of the traffic generator (TG), core of our eval-
uation framework. Figure 1 describes the architecture with
callouts (1)–(6) referenced below.
Thin, extensible core API interface (1). The TG is

constructed on two base classes, AbstractInitiator and
AbstractTarget. Each exposes a compact set of virtual func-
tions that the Design under test (DUT) invokes once per clock
for the connected port. This per-cycle function call lets the
TG synthesize cycle-level requests and responses while keep-
ing the DUT binding minimal. Because only this interface
is bound to the DUT, users are free to implement arbitrarily

complex behaviors. A user can implement a complex call
chain behind the virtual functions to model sophisticated be-
havior or an event queue for a more efficient simulation with
an event-driven manner. We currently provide initiator-side
models (benchmark-mocking generators, synthetic patterns,
and trace replayers) and target-side models (synthetic re-
sponders and trace replayers) and continuously expanding
models that imitate IP behaviors.
Declarative workloads via JSON (2). Workloads are

specified in a concise, human-readable JSON schema. Each
top-level entry describes a TG instance with fields such as:
role, type, params. This declarative layer decouples experi-
ment design from compilation. It encourages sweeping large
spaces (e.g., allowed outstanding transactions, burst distri-
bution, address patterns) without touching C++ code, and it
makes runs easy to version, compare and reproduce.
Runtime factory (3). A lightweight factory resolves

each JSON entry to a concrete class at runtime. The type
field selects the concrete implementation; the corresponding
params block is validated and used to initialize the model.
This compile-once/run-many structure is especially advanta-
geous for designs with numerous initiators and targets: users
link the TG once, then scale experiments by editing JSON
only. In practice, we provide schema validation to catch mal-
formed params early and to emit defaults deterministically.
Transaction-to-interface bridges (4), (5). The TG pro-

duces transactions in an AXI-compliant, C++ class view; two
bridges translate this view to the DUT’s interfaces appropri-
ately:
RTL bridge (DPI-C). It converts each transaction into pin-

level AXI signals across the five channels (AW, W, B, AR, R)
and follows AXI handshake semantics. Timing fields (e.g.,
ready/valid, burst boundaries by LAST signals, and inter-
transaction intervals) are preserved so that RTL sees the
exact intended stimulus.

TLM bridge. It wraps the same transaction into an AMBA
TLM-2.0[3] AXI transaction payload. This enables cross ab-
straction experiments: an RTL and a SystemC model can be
simulated with equivalent traffic (addresses, burst lengths,
IDs, and other control signals) with identical cycle-level tim-
ing.
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Figure 1. TG architecture. (1) initiator side: AbstractInitiator family with benchmark-mock generators, synthetic generators,
and trace replay/transactor. target side: AbstractTarget family with a synthetic responder and trace replay/transactor. (2) JSON
traffic configuration declaring role/type/params. (3) A generator instance (e.g., Random). (4) Per-cycle callback path producing
C++ transaction objects. (5) Per-port bridges translating transactions to pin-level signal for RTL and to AMBA TLM-2.0 for
SystemC. (6) Time source: each port’s clock drives its bridge.

Both bridges provide an infinite FIFO buffer at the inter-
face boundary. If the network saturates or the DUT back-
pressures, requests can queue up in the bridge. The TG
records latency from request creation (when the model issues
it) to drive/handshaked time. This yields accurate end-to-end
latency accounting even when generation runs ahead of in-
terface availability. In addition to precise record fo network
latency, a user can define a maximum number of allowed
buffered transactions and determine whether the network
can provide sufficient performance for a given workload.

Time source and multi-clock domain simulation (6).
The top ports of the DUT act as the time source of connected
traffic models. Each connected bridge drives its per-port
call chain on that port’s clock edge—positive edge for RTL
and (by convention) negative edge for the SystemC model.
This design frees users from manually synchronizing model
clocks to port frequencies. Different TG instances naturally
run at the DUT’s respective port rates, making multi-clock
domain traffic generation simple and legitimate.
Statistics and tracing. Every bridge owns a collector

module following the same design pattern as generators:
a small fixed virtual interface (via an AbstractCollector)
with pluggable implementations. We provide (i) a full-trace
collector that logs every transaction and handshake for high-
fidelity analysis and fine-tuning, and (ii) a summary collec-
tor that aggregates throughput, latency distributions, back-
pressure ratios, FIFO occupancy, and drops (if any) for fast,
flexible space exploration. Users select the collector per in-
stance in JSON, enabling a mix of deep tracing on a few

important ports and lightweight counters elsewhere within
the same run.

3 Evaluation
This section demonstrates three representative workflows
that leverage our framework’s functionality. First, we con-
duct network evaluation on a fixed system configuration,
which is essential for narrowing candidates and identifying
the most promising topologies (Section 3.1). Next, we present
RTL–SystemC cross-abstraction simulation using identical
traffic, which takes advantage of SystemC’s lighter execution
to enable more efficient performance assessment while pre-
serving cycle-level behavior (Section 3.2). Finally, we show-
case waveform replay, which preserves transaction seman-
tics such as initiator inter-arrival and target service time.
This mechanism allows customer workloads to be reapplied
consistently, making it easier to reproduce performance tests
and support design exploration under realistic traffic condi-
tions (Section 3.3). Collectively, these workflows highlight
the framework’s ability to reduce evaluation turnaround,
facilitate workload-driven exploration, and provide practical
support for the design and verification of NoC interconnects.

3.1 Design Exploration
After an initial design-space exploration at higher abstrac-
tion, detailed evaluation of selected promising candidate
networks is required. Three key objectives for the evalua-
tion stage are: (i) ensuring that actual traffic demands can
be processed in low-level models such as SystemC or RTL,
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Table 2. Initiator and target configuration

Data Width Burst Length R/W Ratio Allowed MOs Bandwidth
Initiator (bit) (avg/peak) (R/W) (avg/peak, MB/s)

CPU0 / CPU1 256 4 / 4 6 / 4 32 / 32 17500 / 6000
GPU0 / GPU1 / GPU2 / GPU3 256 4 / 4 5 / 5 32 / 64 22500 / 6000

NPU0 / NPU1 512 8 / 8 5 / 5 256 / 256 40000 / 25000
Target

DDR0 / DDR1 / DDR2 / DDR3 256 - - 40 / 40 -

(ii) confirming that a candidate satisfies customer-defined
hard constraints such as bandwidth requirement, and (iii)
capturing cost-performance tradeoff and select the optimal
network. This experiment demonstrates our methodology
to proceed the evaluation stage.

Figure 2. Exploration workflow on candidate networks. (a)
Utilization rates for each initiator across candidates. The red
dashed line marks a hard utilization constraint. (b) Pareto
plot of candidates, where the x-axis denotes cost proxy (ar-
bitrated/decoded ports) and the y-axis represents evaluation
metric (log of p90 read latency).

Experimental Design. The system configuration is sum-
marized in Table 1. It models a heterogeneous SoC with

initiators including two CPUs, four GPUs, and two NPUs,
and four DDR memory targets. Each initiator entry specifies
the data width, average and peak burst lengths, read/write
ratios, allowed multiple outstanding (MO) transactions, and
required bandwidth. These parameters collectively define
both the traffic injection behavior and memory demand of
each IP. For instance, NPUs operate with a wider data width
(512 bit) and significantly higher outstanding transactions
(256/256), reflecting their throughput-critical role.

Candidate networks were prepared by randomly generat-
ing the OADs. We have synthetically generated traffic based
on the profile described in Table 1, and simulated all net-
works with identical traffic. Firstly, we focused whether can-
didate networks satisfy the bandwidth requirement (Figure
2a). Then, under the assumption that a customer’s primary
concern is service time of NPU traffic, we captured 90th per-
centile of read transaction latency at the NPU initiator side
as our metric. The cost proxy was computed as the number
of arbitrated and decoded ports, directly derived from the
OAD of corresponding network. This reflects structural com-
plexity of the network and the area of the design implicitly.
We plotted the tradeoff space as a Pareto plot (Figure 2b),
with cost proxy on the x-axis and the evaluation metric on
the y-axis.

Result. Figure 2a presents the utilization rate of each ini-
tiator across candidate networks. The red dashed line repre-
sents the utilization requirement to be met. As depicted, net-
work 2 can be excluded from our candidate as it failed to sat-
isfy the constraint. Figure 2b presents the cost-performance
relation across candidate networks. Networks with lower
cost proxies (< 120 ports) exhibit optimal latency for one
NPU initiator while providing unacceptable latency for an-
other, indicating that network resource was not provided in
a balanced manner. On the other hand, networks with higher
cost proxies (>120 ports) exhibit acceptable latency for both
initiators. Based on the Pareto plot, it seems reasonable to
select network 1 among others, as it provides optimal metric
with relatively low cost.

Implication. The experiment illustrates how the pro-
posed framework enables a comparative evaluation of NoC
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designs. The framework allows to formulate lambda func-
tions for cost proxies and performance metrics with vari-
ous visualization utils, therefore users can flexibly configure
Pareto analysis across arbitrary design objectives.

3.2 RTL-SystemC Cross Abstraction Simulation
Executing simulations within a short time enables the ex-
ploration of a broader set of design alternatives or the faster
TAT. To satisfy this demand, our framework also supports
performance evaluation using SystemC models, because Sys-
temC provides a significant speedup while still preserving
cycle-level behavior of RTL. This experiment highlights the
framework’s ability to drive identical traffic into both RTL
and SystemC models at cycle-level, ensuring consistent eval-
uation across abstraction levels.
Experiment design. A single OAD was compiled into

both RTL and SystemC models using our compilation toolkit
(Figure 3a). These two models represent functionally equiva-
lent networks. Simulation for both models was then executed
under the same traffic configuration. For each transaction,
all control fields and timing information (e.g., cycle when
requested and completed) were recorded.
Each recorded transaction was matched across the two

models by its control fields. For corresponding transactions,
latency values were computed independently from the RTL
and SystemC runs, and the difference was calculated. These
latency differences were then aggregated and plotted as his-
tograms (Figure 3b for read and Figure 3c for write).

Figure 3. RTL-SystemC cross-abstraction simulation. (a)
RTL run driven by random generators and fixed-latency
targets; traces recorded. (b) SystemC run driven by text-
trace replayers at initiators and targets. (c) Histogram of per-
transaction read-latency difference (SystemC-RTL; fraction
of transactions). (d) Histogram of write-latency difference.

Result. Under identical stimulus, the average read latency
was 16.40 cycles in RTL and 16.56 cycles in SystemC, corre-
sponding to an RMSE of 2.60 cycles. Write latency averaged
24.45 cycles in RTL and 24.56 cycles in SystemC, with an
RMSE of 2.80 cycles. In both cases, the latency-difference
histograms exhibit sharp peaks at zero, confirming close

alignment between the two models and demonstrating ac-
ceptable cross-model correlation.

Implication. These results highlight two important impli-
cations. First, by injecting identical traffic at cycle granularity
into both RTL and SystemC models, the framework enables
faster performance evaluation. SystemC models of different
network candidates can be assessed using the same method-
ology described in the previous section. Second, the ability
to collect and compare transaction-level traces provides a
practical means to localize discrepancies between the two
models. This not only supports validation but also guides
fine-tuning of the SystemC model, ensuring the model as a
faithful surrogate for RTL.

3.3 Waveform Replay
After the integration of an NoC design into a customer’s SoC,
the most practical way to explore alternatives is to evaluate
networks under the same workloads used in customer’s real
workload-based evaluation. Simply replaying raw timing of
customer-provided waveform would break transaction se-
mantics; for example, generating responses without valid
requests arrival. Therefore, initiator inter-arrival and tar-
get service behavior must be preserved. This experiment
showcases our framework’s waveform replay mechanism,
enabling consistent reuse of customer workloads.
Experiment design. A single OAD was compiled into

RTL and a simulationwas proceededwith random generators
(Figure 4a). During execution, we captured a Value Change
Dump (VCD) of the boundary signals and transaction-level
traces at initiator and target bridges. As in previous experi-
ment, all control fields and timing information were recorded.
We then replayed the captured VCD using the framework’s
built-in VCD parser and initiator/target VCD transactors
(Figure 4b), again recording transaction-level traces. Finally,
we compared the latencies measured at the initiator and
target interfaces between the original and replay runs.
Result. The scatter plots in Figure 4c–f exhibit a clear y

= x behavior for both reads and writes, across both initiator
and target sides: every point lies on the diagonal, confirming
that each transaction in the replay completed with identical
latency to its counterpart in the original run.
Implication. This experiment confirms that by preserv-

ing transaction semantics, namely initiator inter-arrival tim-
ing and target service latency, the framework can faithfully
reproduce customer workloads in replay. Such fidelity en-
sures that endpoint behavior is maintained, enabling reli-
able reapplication of performance tests under realistic traffic
conditions. Moreover, as the replay reproduces cycle-exact
behavior on the same network, it can also serve as an ef-
fective tool for verification support: this capability enables
engineers to pinpoint the source of bugs more effectively,
thereby accelerating customer-side verification.
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Figure 4. Waveform replay. (a) RTL experiment: random traffic driven into the network, boundary waveform and transaction
traces captured. (b) Replay experiment: original waveform parsed and injected back into the network via VCD transactors,
reconstructing transaction semantics. (c)–(f) Scatter plots comparing original vs. replay latencies: (c) read at initiator, (d) read
at target, (e) write at initiator, (f) write at targe.

4 Conclusion
This work has presented an end-to-end evaluation frame-
work built on a cycle-level traffic generator to address two
persistent challenges in NoC IP design: efficient performance
exploration and verification support. The framework inte-
grates four key capabilities. First, it provides an extensible
and intuitive interface that allows new traffic models to be
incorporated with minimal effort. Second, it supports human-
readable workload specifications in JSON, enabling rapid
construction and iteration of diverse evaluation scenarios.
Third, the framework can drive cross-abstraction simula-
tion by driving identical traffic into both RTL and SystemC
models. Once validated, the SystemC estimator can stand in
for RTL, making broader design space exploration efficient
while retaining cycle-level fidelity. Finally, the framework
introduces a waveform replay mechanism that preserves
transaction semantics, including initiator inter-arrival tim-
ing and target service latency. This feature allows customer
workloads to be reapplied consistently, enabling meaningful
and reproducible performance studies under realistic traffic
conditions. At the same time, because replay faithfully recon-
struct cycle-exact behavior on the same network, it provides
practical verification support by allowing engineers to local-
ize bugs from boundary traces and accelerate the debugging
process.
Together, these capabilities form a practical methodol-

ogy to navigate the complex design space of heterogeneous
SoCs. The experiments demonstrated in this paper, candidate

design exploration, SystemC/RTL cross-abstraction simula-
tion, and waveform replay, illustrate how the framework
shortens overall TAT by supporting and facilitating designer
workflow. Looking ahead, the framework can be extended
toward data-driven synthesis of irregular NoC topologies
by leveraging its modular APIs for new workload models
and design objectives. It thus provides immediate utility for
current SoC designs while offering a foundation for future
workload-driven interconnect methodologies.
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