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Figure 1: DaisenBot is a web-based interactive AI assistant that helps users address questions when using Daisen, the GPU
simulator visualization tool. It generates accurate, context-specific answers from multimodal user inputs. (A) The control
panel provides options for starting a new chat, deleting a chat, and switching between chats. (B) Chat history is displayed
in the center of the panel for easy reference. (C) DaisenBot supports multimodal inputs, including file and image uploads,
screenshot attachments, simulation trace attachments (C1), and source code attachments (C2). (D) Text input serves as the
primary interaction channel, where users can enter questions and additional information.

Abstract
Graphics Processing Units (GPUs) play a critical role in accelerating
applications across artificial intelligence, physical simulations, and
medical imaging. Analyzing simulator-generated execution traces
is essential for understanding GPU behavior and identifying per-
formance bottlenecks, but users often face challenges interpreting
complex visualizations and hierarchical data structures. To address
this, we present DaisenBot, an interactive AI assistant that lever-
ages large language models to provide accurate, context-specific
answers from multimodal inputs, including text, images, simulation
traces, and source code. DaisenBot helps users clarify questions,

navigate relevant simulation data and subpages, and better under-
stand and analyze simulation results, offering practical support for
both novice and experienced users.
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1 Introduction
GPUs have been widely used to accelerate applications in artifi-
cial intelligence [7, 20], physical simulations [8, 24], medical imag-
ing [5, 29], and information visualization [9, 19]. To improve GPU
performance, hardware designers need to examinemassive amounts
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of simulator-generated traces to identify performance bottlenecks.
Visualizing execution traces can reduce users’ cognitive load and
help them better understand the behavior of GPU hardware com-
ponents [2, 23, 30].

However, for users relying on visualized GPU execution traces,
understanding the visualization itself and understanding how it con-
nects to the simulated hardware mechanisms and specific simulator
implementations remains a major challenge—a well-recognized
concern in the field of data visualization [3, 11].

Traditionally, users turn to simulator manuals or direct commu-
nication with developers for assistance. Manuals are often time-
consuming to consult and limited by documentation quality [4, 14–
16], while contacting developers depends on their responsiveness
and is frequently hindered by communication inefficiencies, espe-
cially in small open-source teams. These limitations highlight the
need for more effective, scalable support mechanisms.

Recent advances in generative AI, particularly multimodal large
language models (LLMs), provide a promising new direction. Un-
like conventional tools, multimodal LLMs can process heteroge-
neous inputs—such as natural language, screenshots, code snip-
pets, and trace files—and generate context-aware answers that inte-
grate knowledge across these modalities [17, 26, 27]. This capability
makes them well-suited to assist users of GPU simulator visualiza-
tion tools, where questions often require linking visual traces to
underlying documentation and source code.

These challenges motivate our research question: How can gen-
erative AI effectively support computer architects in the context of a
visualization-based performance analysis tool? A central obstacle in
developing such support is the lack of paired multimodal training
data, where user queries (e.g., screenshots, trace files) are aligned
with the appropriate instructions or answers.

To address this, we propose DaisenBot, an interactive web-based
assistant that leverages pre-trained LLMs. By integrating simulator
documentation, images, trace files, and source code, DaisenBot can
generate accurate and context-specific answers to users’ questions
when using the Daisen visualization tool.

In summary, this paper makes the following contributions:
• DaisenBot, an interactive AI chat assistant designed to help users
address questions that arise when using the GPU simulator vi-
sualization tool, Daisen. DaisenBot generates accurate, context-
specific answers from multimodal user inputs, without requiring
paired training data.

• Practical support for users of the Daisen visualization tool, includ-
ing clarifying questions, providing organized simulation data,
guiding users to relevant subpages and simulation settings, and
assisting in understanding and analyzing simulation results.

2 A Primer for Daisen
Overview.Daisen is a web-based framework that visualizes detailed
GPU execution traces so architects can inspect behavior, identify
bottlenecks, and validate design changes [23]. Daisen provides three
coordinated views—Overview Panel, Component View, and Task
View (see Figure 2)—to move fluidly from global patterns to per-
component timelines and task hierarchies. In this paper, we use
Daisen as the visualization substrate that our DaisenBot assistant

augments to explain what users see and to guide analysis steps
within the same interface.
Daisen trace data format. Daisen consumes detailed execution
traces collected from MGPUSim [21]. Daisen’s trace format models
execution as hierarchical taskswith fields ID, Parent ID, Category,
Action, Location, and Start/End. The streamlined yet expressive
schema allows Daisen to reconstruct execution details and makes
the data uniform and machine-readable, which is helpful for GenAI
parsing and grounding.
Overview Panel. The Overview Panel (see Figure 2 (A)) is the
entry point for locating time intervals that merit closer inspection.
It renders small multiples—one time series per hardware compo-
nent—split across pages when components are numerous. A regex
filter (e.g., (CU|L1|L2)) narrows components for side-by-side com-
parison. Users can plot a primary and secondary y-axis metric (six
metrics are available in the current implementation), and zoom-
ing or panning any chart synchronizes the time window across all
charts. Clicking a component name jumps to its Component View
for the same interval.
Component View. Selecting a component opens a hierarchical,
Gantt-like view of all tasks executed on that component (see Fig-
ure 2 (C)). An up-floating row-assignment packs bars tightly from
the top without overlap, so vertical stacking at the same 𝑥-position
directly encodes instantaneous parallelism (how busy the compo-
nent is). Tasks are color-coded by Category–Action; the interac-
tive legend supports search/highlighting and reveals task metadata
on hover.
Task View. The Task View (see Figure 2 (B)) complements the
Component View by showing the parent task above the current task
and all subtasks below it. Its time axis is locked to the Component
View, so panning/zooming either view updates both. This coupling
lets users trace a long-latency operation back to the component
and understand why the component cannot finish the task earlier.
Why Daisen. We choose Daisen because it is widely used in
GPU-architecture research and combines expressive analysis with
easy deployment. As aweb-based client–server system, it is straight-
forward to extend (e.g., adding analysis panels or APIs) and in-
tegrates cleanly with existing simulators—its lightweight instru-
mentation is already part of MGPUSim releases. Most importantly,
Daisen enforces a uniform, task-centric trace schema that preserves
hierarchy and causality across components. This consistency makes
it a natural substrate for GenAI: models can reason over stable
fields (IDs, parent/child links, categories/actions, timestamps), fol-
low end-to-end Request Out/Request In chains, and align explana-
tions with exactly what the UI displays.
Why a ChatBot. Daisen is an expert tool. While its Overview
→ Component → Task workflow greatly reduces the burden of
navigating massive traces, effective use still leans on component
knowledge (e.g., caches, compute units, memory controllers) and
experience selecting representative intervals. Users must choose a
time window, pick metrics, and inspect a handful of tasks—steps
where newcomers may struggle to identify the “best” slice or task
chain. A chatbot mitigates this by answering “what am I looking
at?”, proposing filters and time ranges, and suggesting next clicks
that connect hypotheses to the corresponding task chains.
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Figure 2: The original Daisen interface includes (A) the Overview Panel, (B) the Task View, and (C) the Component View.

3 DaisenBot
3.1 System Overview
DaisenBot is an extension of the Daisen Visualization Tool [23], re-
siding in the right sidebar of the Daisen interface. Operating within
the same system facilitates the convenient transfer of simulation
traces and component view screenshots already available in Daisen
directly to DaisenBot. The primary function of DaisenBot is to an-
swer users’ questions when examining Daisen visualizations in the
main Daisen interface.

DaisenBot currently supports OpenAI APIs, with planned sup-
port for other chatbot APIs and self-hosted models in the future.
Users may configure a .env file to specify their API credentials,
including the API link, model name, and key.

DaisenBot’s interface layout (see Figure 1) is similar to that of
a typical chatbot that has the user input at the bottom and the
conversation history on top. DaisenBot specifically emphasizes
multimodal input, including file, image, current Daisen screenshot,
trace data (collected from GPU simulation), and simulator source
code. The multimodal input, sent to the generative API together
with the user’s chat messages, provides the Daisen context, allowing
the generative AI to provide more targeted answers.

3.2 Multimodal Input
For every text message that is sent to the ChatBot API, DaisenBot
allows five types of contextual, multimodal data, including: file
uploads (designed for data, text and code files), image uploads,
attaching the current Daisen interface screenshot, the raw data of
what is currently being visualized in Daisen, and the simulator’s
source code from GitHub.

Next, we describe each input type in detail, including text input.
Text Input. Users can enter any textual information in the input
box, as shown in Figure 3(a). Similar to a terminal, the interface
supports quick navigation through input history using the up and
down arrow keys. This is the primary channel for interaction be-
tween the user and DaisenBot. DaisenBot generates answers in
response to the questions entered here.

File Upload.As shown in Figure 3(b), users can upload any relevant
text, data, or code files from their local machine. Supported formats
include, but are not limited to, .txt, .json, .csv, .sqlite3, .py, .c, and .cpp.
Once uploaded, files are displayed in a list with an icon representing
their type, the file name, and file size, alongwith an option to quickly
remove them. Files are converted to plain text before being sent to
the backend for DaisenBot to process.
Image Upload. As shown in Figure 3(c), users can upload image
files in formats such as .png, .jpeg, .jpg, .svg, and .gif. Similar to
file uploads, the files are displayed with type icons, names, sizes,
and quick removal options. Images are encoded in Base64 format
before being sent to the backend for processing.
Attach Screenshot. When users wish to ask a question about the
current Daisen view, DaisenBot provides the “Attach Screenshot”
feature, which can attach the current Daisen interface screenshot
using the html2canvas [25] package. As shown in Figure 3(d), click-
ing this button automatically captures and attaches a screenshot of
the active Daisen window. This feature supports all Daisen pages,
including the Overview Panel, Component View, and Task View.
Once captured, the screenshot is processed in the same way as an
uploaded image.
Attach Trace. The Daisen Visualization Tool operates on collected
traces that contain both event information (e.g., name, location) and
timing details (e.g., start and end times) for simulator components.
For trace-specific questions, DaisenBot provides the “Attach Trace”
feature, which can attach the currently opened simulation trace.
Since traces from large simulations can result in very large files
and extracted plain text may be prohibitively long, attaching the
entire trace can be inefficient and costly in terms of tokens. To
address this, DaisenBot enables users to attach only partial traces.
As shown in Figure 3(e), the trace attachment interface allows users
to attach selected, all, or currently displayed component traces. A
pair of sliders are also provided to filter events within a selected
time interval.
Attach Source Code. Since the execution logic of events in a trace
is closely tied to the simulator’s source code, DaisenBot allows users
to attach the relevant source code directly from GitHub REST API
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Figure 3: DaisenBot Multimodal Input. (a) Text Input. Users enter their primary question in plain text. (b) File Upload. Users
can upload any relevant text, data, or code files from their local machine. (c) Image Upload. Users can upload image files from
their local machine. (d) Attach Screenshot. Users can attach the current Daisen interface screenshot. (e) Attach Trace. Users can
attach the currently opened simulation trace in Daisen. (f) Attach Source Code. Users can attach the simulator’s source code
from GitHub REST API.

[6]. As shown in Figure 3(f), to address token cost concerns similar
to those for traces, users can attach only selected components’
source code. These files are processed by the backend in the same
manner as code uploaded through the File Upload feature.

3.3 Multi-Modal AI Assistant
Response Generation. DaisenBot integrates both plain text and
multimodal inputs from the chat panel to generate responses. The
workflow proceeds as follows:

(1) The frontend encodes image inputs into Base64, extracts plain
text content fromuploaded files, and sends these inputs—together
with user-selected trace and source code options, plain-text
question as well as the current URL information (base address
and parameters)—to the backend.

(2) The backend applies the user’s trace options to filter the full
trace file, retaining only the specified trace events. The filtered
events are then encoded into a CSV-formatted plain text repre-
sentation.

(3) The backend retrieves the relevant simulator source code from
the GitHub REST API, including file names and repository paths.
Users may specify which simulator components are relevant to
their query, as described in §3.2.

(4) The backend loads a predefined prompt from a text file that
contains essential task environment information. This includes
an introduction to Daisen, Akita, and MGPUSim; descriptions
of visible components on Daisen pages; expected user input
formats and outputs; and other necessary details.

(5) All collected inputs are concatenated into a plain text prompt,
after which the backend sends an HTTP POST request to the
OpenAI API. If the model name or API key has not yet been
configured, users are prompted to provide them upon first use.
The chat history is also included to preserve conversational
context.

(6) Once a response is received, the backend forwards it to the
frontend. The DaisenBot frontend then decodes the output and
displays it in the chat panel. It additionally supports mathe-
matical typesetting and rich text formatting (e.g., bold or italic
fonts), rendered using the KaTeX package.

Visualization Suggestion in DaisenBot’s Response.
In a visualization tool, the chatbot is not intended to replace

the role of a human. Instead, the chatbot should facilitate. Accord-
ingly, DaisenBot not only uses text to explain what users see, but
also actively directs them to relevant visualizations. Its responses
may include links to specific Daisen views (see Figure 4(a)) or to
simplified charts (see Figure 4(b)).

When DaisenBot determines that navigating to a particular
Daisen view can help the user diagnose a simulation issue or gain
deeper insights into results, it provides one or more shortcut URLs.
This functionality leverages a unique feature of Daisen: all views
are URL-encoded and can be linked directly.

For example, when DaisenBot identifies the host-to-GPU mem-
ory transfer as the main bottleneck—“the host-to-GPU memory
transfer is longer than the kernel execution time” (see Figure 4(a))—
it suggests that the user examine the execution timeline to compare
memory copy time against kernel execution time (see Figure 4(c)).
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Figure 4: DaisenBot Response Examples with URLs. (a) Response with a Daisen subpage URL. (b) Response with a Data
Visualization URL. (c) Navigate to a new browser tab to the Daisen subpage (Task View). (d) Navigate to a new browser tab to the
Data Visualization page.

Occasionally, Daisen may lack the most effective visualization
for deeper analysis, as it does not provide standard charts such as
line or bar plots. To address this gap, DaisenBot can generate a
shortcut URL to a Data Visualization Page, where it produces
simple charts (e.g., bar or pie). An example is shown in Figure 4(d):
a bar chart visualization page that enables users to quickly explore
data patterns and obtain an overview before engaging in more
detailed analysis.

4 Evaluation
We evaluate DaisenBot’s capabilities in three aspects, from the most
basic to the most advanced: clarifying users’ questions about the
Daisen visualization tool (§4.1); providing organized simulation
data, relevant subpages locating and simulation settings (§4.2); and
supporting users in understanding and analyzing simulations (§4.3).

We evaluate DaisenBotwith a trace collected fromMGPUSim [21].
We run the Finite Response Filter (FIR) benchmark from the Het-
eroMark benchmark suite [22] with 4096 input data samples and a
tap count 16. FIR is selected since it is a small, commonly used GPU
algorithm. Using other benchmarks should yield a similar evalua-
tion result. The GPU simulated is the AMD R9 Nano GPU [1, 10],
default to MGPUSim.

Daisen (Component View)

Figure 5: Example of a user inquiry about the meaning of
each colored event in the component view of L1VAddrTrans.

4.1 Explaining Daisen
We first evaluate whether DaisenBot can clarify users’ questions
about Daisen. In this case, we assume that the user seeks to under-
stand the meaning of each colored event in the component view
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of L1VAddrTrans. The corresponding conversation is shown in
Figure 5.

DaisenBot leverages multimodal information when generating
explanations. For instance, in the response, the “Event in the Task
View” section demonstrates that DaisenBot can correctly explain
most task types using pre-trained knowledge (e.g., virtual addresses
must be translated to physical addresses). Moreover, DaisenBot in-
troduces the term “translation provider”, which appears in the sim-
ulator’s implementation, indicating that it can integrate source code
information into its explanations. The statement, “The mem.ReadReq
and mem.WriteReq are processed by translating their addresses and
then sending them to the correct memory unit”, is a good example
of a concise summary of this process.

However, the response remains unsatisfactory in two respects.
First, DaisenBot does not synthesize the information into a single
coherent explanation; instead, the answer is fragmented across
multiple contexts (Task View, Trace File Context, and Code Context).
Second, its visual reasoning is limited, as it incorrectly associates
colors with task types, despite the presence of clear legends in the
Daisen interface.

4.2 Summarizing Data
Next, we evaluate whether DaisenBot can effectively summarize
data within the Daisen tool. In one example, the user asks whether
host-to-GPU memory transfer or kernel execution time dominates
the overall simulation time (see Figure 4(a)). DaisenBot not only
provides a direct answer but also generates a link to the relevant
subpage (Task View, as shown in Figure 4(c)) for further inspection.
This demonstrates its ability to both interpret the user’s question
and retrieve the corresponding data from attached files (e.g., Daisen
trace files) to support its response.

In another example, the user requests a count of events for each
component class in the trace file (see Figure 4(b)). DaisenBot re-
sponds with a static table in the chat panel and additionally gener-
ates a link to a new Data Visualization page (see Figure 4(d)), where
the user can interactively edit and visualize the data. This highlights
DaisenBot’s capability to organize and summarize complex data
from attached files in a way that directly supports user queries.

4.3 Facilitating Understanding
Finally, we assess DaisenBot’s performance on more challenging
analysis tasks.

As illustrated in Figure 6, we consider a scenario where the user
asks DaisenBot to identify the potential bottleneck of a specific
simulation—an inherently difficult task even for experienced GPU
architecture developers. DaisenBot explores four possible bottle-
necks and concludes that memory bandwidth and latency are the
most significant contributors, with cache and TLB contention fur-
ther aggravating the problem. Although its analysis leaves room
for refinement, DaisenBot demonstrates the ability to integrate
multiple data sources, producing an explanation that is not generic
but grounded in concrete evidence, including event names drawn
from both the source code and attached traces.

Figure 6: Example of a user inquirywhereDaisenBot analyzes
and identifies potential bottlenecks in a specific simulation.

5 Discussion
In this section, we reflect on the findings from our evaluation of
DaisenBot and examine its limitations, along with potential direc-
tions for future improvements in DaisenBot.
Lost-in-the-Middle Issue. The lost-in-the-middle phenomenon is
a well-documented challenge in the field of large language models
(LLMs), referring to the model’s diminished ability to effectively
utilize relevant information located in the middle of a long input
context. Studies have shown that performance can degrade signifi-
cantly when relevant information is positioned centrally, even in
models designed to handle extensive contexts [13].

When evaluating DaisenBot, we observe similar limitations.
When users upload lengthy or complex inputs—such as large sim-
ulation traces containing tens of thousands of events—DaisenBot
sometimes overlook key details buried in the middle of the file. This
results in incomplete, generic, or inaccurate responses, even though
the relevant data is present.

To mitigate these challenges, a potential solution is to adopt
an embedding-based retrieval approach, inspired by recent work
integrating LangChain [12], OpenAI [17], and vector databases
such as Pinecone [18]. Instead of passing the entire trace file to
the model, the trace can be segmented into smaller, semantically
meaningful chunks, each represented by embeddings and indexed
in a vector store. When a user submits a query, only the most
relevant segments are retrieved and provided as context to the
model. This approach not only reduces context overload but also
ensures that information located in the “middle” of large inputs
remains accessible and prioritized during reasoning.

Future work will focus on integrating such retrieval-augmented
generation (RAG) techniques into DaisenBot to better handle large-
scale traces (e.g., 100k+ rows) and improve the accuracy of re-
sponses for complex simulation analysis tasks.
Visual Reasoning Failure.Visual reasoning failure is a recognized
limitation in multimodal LLMs, where the model struggles to accu-
rately interpret and reason about visual inputs, such as images or
diagrams. Recent research has highlighted significant performance
gaps in visual reasoning tasks, even among advanced multimodal
models [28].
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In our assessment of DaisenBot, we observe cases where the
model misinterprete visual information—for instance, miscounting
elements, overlooking subtle visual cues, or drawing incorrect infer-
ences from diagrams. To address these issues, improvements in the
integration of visual processing pipelines are needed. Specifically,
the potential solutions include: (1) avoiding reliance on html2canvas
[25] for screenshots and instead enabling the backend to generate
high-resolution images, and (2) supplementing screenshots with
the corresponding HTML DOM tree structure to provide richer
contextual information for reasoning.

In the future, advancing DaisenBot’s visual reasoning ability will
require a combination of higher-quality visual data representations
and tighter coupling between visual and structural inputs.

6 Conclusion
In this paper, we presented DaisenBot, an interactive AI assistant
designed to support users of the GPU simulator visualization tool,
Daisen. By leveraging pre-trained large language models, Daisen-
Bot can generate accurate, context-specific answers from multi-
modal inputs, including text, images, simulation traces, and source
code, without requiring paired training data. Our evaluation demon-
strates that DaisenBot effectively clarifies user questions, organizes
simulation data, guides users to relevant subpages and settings, and
assists in analyzing simulation results. We also discussed limitations
such as the lost-in-the-middle issue and visual reasoning failures,
which highlight opportunities for future improvements. Overall,
DaisenBot provides a practical solution for reducing cognitive load
and enhancing the usability of GPU simulator visualization tools.
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