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Abstract
Cloud computing relies on hypervisors to multiplex hard-
ware across virtual machines, making memory translation a
critical performance path. Two-stage address translation is
a standard requirement across modern ISAs that support
virtualization, but the recent ratification of RISC-V’s hy-
pervisor/privileged extensions has only begun to propagate
through implementations and software stacks—so the precise
interactions among Translation Lookaside Buffers (TLBs),
page-table walkers (PTWs), and the memory hierarchy on
RISC-V remain an active and important area for study. Given
RISC-V’s growing traction in datacenter initiatives, a de-
tailed understanding of virtualization performance is criti-
cal. Previous work added the H extension with functional
support for two-stage translations in gem5, enabling cor-
rectness studies of virtualized RISC-V systems, but lacked
the timing fidelity required to study full cloud stacks un-
der realistic processor models. In this paper we introduce a
cycle-accurate timing model of two-stage page walks inte-
grated with gem5’s out-of-order (O3) CPU, enabling—for the
first time—the evaluation of a complete RISC-V cloud stack:
a Linux guest VM running real workloads, managed by the
type-1 hypervisor Xvisor. Our model incorporates instruc-
tion and data page-walk caches (PWCs), L1 ITLB/DTLBs,
and PTWs that interact with the core and memory hierar-
chy. Using eleven workloads from the MiBench suite, we
systematically vary L1 TLB and PWC sizes, quantifying the
performance trade-offs of different MMU configurations and
also identifying a cost-efficient, near-optimal design point.
Results show that excessively enlarging both first-level TLBs
and pagewalk caches yields diminishing returns. Our imple-
mentation will be open-sourced to foster further research in
RISC-V cloud system design and evaluation.
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1 Introduction
The RISC-V ISA has emerged as a foundation for diverse
computing domains, ranging from embedded devices to high-
performance computing and cloud infrastructure. Although
the RISC-V cloud ecosystem is still in its early stages, sig-
nificant efforts [10] are underway to advance it to the level
of its x86 counterpart. Its modular and extensible design en-
ables features such as the recently ratified Hypervisor (H)

extension, which provides hardware support for virtualiza-
tion. This extension introduces a new privilege level for the
hypervisor (HS) and supports two-stage address translation,
thereby allowing type-1 hypervisors like Xvisor [2, 15] to effi-
ciently manage multiple guest operating systems on RISC-V
hardware. Virtualization is indispensable for cloud comput-
ing, as it enables flexible workload management, security
isolation, and efficient resource utilization. However, it also
amplifies the importance of the memory management unit
(MMU), particularly under two-stage translation.

In our prior work [11], the H extension was integrated into
gem5 [7], demonstrating functional correctness and enabling
the first boot of Xvisor and Linux VMs inside the simula-
tor. That work validated gem5 as a platform for studying
virtualized RISC-V systems, but relied on simplified timing
assumptions—memory accesses were simulated only at a
functional level. As a result, the performance-critical behav-
ior of two-stage page walks—latency amplification, cache
pressure, and contention—was not accurately captured by
the simulations.
Two-stage address translation poses fundamental chal-

lenges for performance evaluation. In the Sv39x4 setting
with VS-stage and G-stage walks, a single TLB miss can
require up to 16 memory accesses: each of the three VS-
stage levels may trigger a full four-level G-stage walk, and
a final four-level G-stage walk is still needed for the trans-
lated guest-physical address. Without caching mechanisms
such as translation lookaside buffers (TLBs) as well as in-
struction and data page-walk caches (PWCs), this latency
quickly becomes prohibitive. Furthermore, in out-of-order
(OoO) processors, PTW stalls can propagate deeply into the
front-end (through ITLB and I-PWC misses) and back-end
(through DTLB and D-PWC misses), degrading pipeline uti-
lization. Capturing these dynamics requires a timing-faithful
integration of the page walker into gem5’s detailed OoO
CPU model.
This paper fills that gap by providing a cycle-accurate

timing implementation of RISC-V two-stage translation in
gem5, enabling—for the first time—the study of a realistic
cloud software stack: a Linux VM executing real workloads
under the management of the Xvisor type-1 hypervisor. With
this capability, researchers can evaluate how MMU design
decisions (e.g., L1 TLB sizes, PWC capacities, walker paral-
lelism) affect cloud application performance. This bridges
the gap between ISA-level functional correctness—which
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our prior work addressed— and accurate microarchitectural
performance analysis.
The significance of this work lies in transforming gem5

from a correctness-focused prototype of virtualization sup-
port into a tool that can model cloud-relevant timing effects.
Just as the prior integration of the H extension allowed us
to boot virtual machines, our new contribution allows us to
study them in detail: we can now quantify the trade-offs of
MMU design under realistic cloud workloads.

In summary this paper makes the following contributions:

1. Full cloud stack evaluation. We demonstrate, for the
first time, the simulation of Linux VMs under the Xvi-
sor type-1 hypervisor in gem5 with realistic timing for
two-stage translation.

2. Timing-accurate page-walkmodel.We implement cycle-
accurate VS- and G-stage translation in gem5, model-
ing timing-accurate PTE fetches and interaction with
the OoO CPU pipeline.

3. Sensitivity analysis. We run representative workloads
while varying L1 ITLB/DTLB and I/D PWC sizes, quan-
tifying the trade-offs between performance and cost
of resource provisioning.

4. Open-source release. The H extension implementation
has been integrated in the latest gem5 version [1]. A
follow-up pull request (PR) will be made to update the
two-stage translation walker enabling timing-accurate
walks, as presented in this paper.

2 Background
2.1 The gem5 simulator
The gem5 simulator [1, 9, 14] is a state-of-the-art, open-
source, cycle-accurate, full-system simulator widely used for
performance evaluation. It supports a variety of CPU ISAs
(RISC-V, ARM, x86) and offers extensive configurability for
microarchitectural parameters, including the number and
type of cores, pipeline structure, cache hierarchy, buffers,
queues, and speculation mechanisms. gem5 can operate in
two modes of simulation: functional (atomic) mode for fast
emulation, and detailed (timing) mode for cycle-level accu-
racy. It also supports both syscall emulation (SE) and full-
system (FS) simulation. In the former, the simulator substi-
tutes the operating system’s provisions artificially whereas
in the latter the full operating system software is running
and providing its services to user programs.

2.2 RISC-V H extension
The RISC-V H extension [4] was introduced to provide ar-
chitectural support for virtualization, a capability that has
become essential across modern computing platforms. Virtu-
alization enables multiple operating systems and workloads
to share hardware resources securely and efficiently, but
implementing it purely in software often incurs significant

overheads in address translation, context switching, and
memory management.
To address these challenges, the H extension adds hard-

ware mechanisms for managing virtual machines, including
support for nested page tables, guest/host privilege modes,
and hardware-assisted address translation. These features
reduce the performance penalties of virtualization while
strengthening isolation between guest environments.

The availability of hardware-assisted virtualization is par-
ticularly important in domains such as cloud infrastruc-
ture and data centers, where workload consolidation, multi-
tenancy, and resource efficiency are critical. At the same
time, the extension is designed with flexibility, making it
applicable to embedded and edge systems that increasingly
rely on lightweight virtualization for isolation and security.

2.3 Xvisor bare-metal hypervisor
Xvisor [2] is a type-1 (bare-metal) open-source hypervisor
that provides a lightweight, flexible, and portable virtual-
ization platform. It is optimized for high performance and
minimal memory usage, and supports a variety of CPU archi-
tectures, including RISC-V. Its portability enables adaptation
across a wide range of general-purpose hardware platforms.
Xvisor offers full virtualization, allowing it to run unmod-
ified guest operating systems such as Linux [6]. It also in-
cludes several modern hypervisor features, such as device
tree-based configuration, a built-in threading framework,
support for runtime loadable modules, dynamic creation and
destruction of guest systems, network virtualization, and
input device virtualization.

2.4 MiBench Suite
The MiBench benchmark suite, developed by the Univer-
sity of Michigan, comprises a collection of 35 applications
categorized into six domains: consumer, networking, office,
security, automotive, and telecommunications. These bench-
marks are designed to emulate the performance character-
istics of real-world applications, encompassing a variety of
workloads such as multimedia processing, data compression,
encryption, and network communication. By providing a
diverse set of applications, MiBench serves as a valuable tool
for evaluating and comparing the performance of different
processor architectures and configurations.

Utilizing MiBench as a representative for cloud workloads
is a reasonable approach, as it offers a broad spectrum of
applications that mirror the diverse nature of tasks encoun-
tered in cloud environments. The suite’s inclusion of ap-
plications with varying computational demands, memory
access patterns, and input/output characteristics allows for a
comprehensive assessment of system performance across dif-
ferent workload types. This diversity enables researchers and
practitioners to gain insights into how cloud infrastructures
handle a wide range of tasks, from data-intensive opera-
tions to latency-sensitive processes. Therefore, leveraging
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MiBench in cloud performance evaluations can provide valu-
able benchmarks for understanding system behavior and
optimizing cloud resource management.

3 Implementation
3.1 Two-Stage Translation
In our previous work [11], the functional two-stage address
translation is implemented as illustrated in Figure 1. Guest
address translation in RISC-V consists of two stages, each
involving a complete page table walk. Both stages rely on
hypervisor registers that store the base address of the corre-
sponding page tables—namely, vsatp for the first stage and
hgatp for the second.
The first stage, known as the VS-stage, is managed by

the vsatp register and is responsible for translating a guest
virtual address (GVA) to a guest physical address (GPA). How-
ever, the resulting GPA is still treated as a virtual address
from the perspective of the host system. Therefore, this GPA
must undergo a second translation stage—known as the G-
stage—which translates it into a host physical address (HPA)
using the hgatp register.

A key aspect of this process is that every memory access
during the VS-stage walk (including intermediate page table
accesses) produces a GPA that must also be translated by
the G-stage before the host can access the corresponding
physical memory. Thus, resolving a single GVA may require
multiple nested translations, where every page table pointer
generated by the VS-stage must itself be resolved through
a G-stage page table walk. This recursion occurs until the
final host physical address is determined.
Figure 1 visualizes the entire two-stage translation pro-

cess. In the diagram, blue represents the guest virtual address
(GVA), pink represents the guest physical address (GPA, still
treated as virtual), and orange represents the final host phys-
ical address (HPA).

3.2 Two-Stage Timing Walks
gem5’s timing CPU models support page walking with tim-
ing information to enable more realistic simulation. Specif-
ically, every translation request issued either by the fetch
stage or by the Load-Store Queue (LSQ) in the O3 model
results in a TLB lookup. In the case of a TLB hit, the corre-
sponding physical address is returned with no cycle penalty.
Otherwise, a timed page table walk is initiated.
For each memory access required during the walk (e.g.,

to retrieve each page table entry and resolve the physical
address), a packet is created and sent via ports to the ap-
propriate pagewalk cache—instruction or data—to fetch the
corresponding data, possibly traversing the upper levels of
the memory hierarchy in case of misses. When the response
is received, the stepWalk() process is called, as mentioned
in [11], to advance the page walk process. This page walk pro-
cess proceeds asynchronously. Any new translation requests
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Figure 1. Two-Stage Translation in the RISC-V ISA.

that occur during an ongoing walk are stored in a queue and
initiated only after the previous walks have completed.

In this work, we extend the existing approach to support
two-stage timing walks. First, we split the stepWalk() process
into two sub-processes in order to separate the first stage
(single-stage or VS-stage) from the second stage (G-stage)
accesses. This separation is necessary to preserve the correct
sequencing of the two-stage walking process, since the tim-
ing behavior of two-stage translation cannot be encapsulated
within a single function as before, but must instead be driven
by event-based handling.

Building on this, when a packet is received, the appropriate
stage of translation (VS or G) is invoked. After the VS-stage
completes, an additional G-stage translation is triggered to
resolve the resulting guest physical address. Finally, the TLB
is updated only after the G-stage translation has completed.

4 Experimental Results
After validating our implementation using the H-extension
targeted tests [3] and successfully booting Xvisor—both per-
formed with the O3 CPU model in gem5—we conduct experi-
ments using 11 benchmarks from the MiBench suite [13] and
18 configurations based on parameter sets from the values in
Table 1 and detailed below. All experiments were performed
on an AMD EPYC 9654 96-core processor (192 hardware
threads) and 384GB of DDR5 RAM.

Figures 2 and 3 present the percentage change in simulated
cycles across various configurations, as shown in Table 1,
using the smallest size as the baseline configuration in each
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Figure 2. ITB (top) & DTB (bottom) performance comparison.

Parameter Value
CPU 64-bit RISC-V OoO pipeline
ITLB 8, 16, 32, 64, 128 entries
DTLB 8, 16, 32, 64, 128 entries
IWC 128, 256, 512, 1024, 2048 bytes
DWC 128, 256, 512, 1024, 2048 bytes
I-Cache 32KB, 2-way, 64B block, 2-cycle latency
D-Cache 64KB, 2-way, 64B block, 2-cycle latency
L2-Cache 2MB, 8-way, 64B block, 20-cycle latency
Table 1. Summary of the microarchitectural configuration
parameters and their supported values.

graph (i.e., dtb_8 and itb_8 in Figure 2, and iwc_128 and
dwc_128 in Figure 3). The different configurations are laid
out on the x-axis (from smaller to larger), while the y-axis
shows the runtime change % relative to the baseline. The big
configuration uses maximally sized components with respect
to the parameters of Table 1. Each of the other configurations
varies the size of a specific hardware component while keep-
ing all other components constant and set to their maximum
values (i.e., their values in the big configuration), in order

to isolate and highlight the impact of that component on
performance. For example, in dtb_8 the DTB has 8 entries
while the ITB was configured with 128 entries, the IWC with
2KB, and the DWC with 2KB. Note that the negative values
on the Y-axis indicate performance improvement—relative
to the baseline configuration—in percentage units.
The maximum change in cycle count observed across all

configurations and benchmarks was 38% for the ITLB, 43%
for the DTLB, 17% for the IWC, and 33% for the DWC, demon-
strating the significant influence of TLBs on performance.
The walker caches, which are accessed upon a TLB miss (dur-
ing page-walking), also play an important role. Their com-
plementary role—activated only when a TLB miss occurs—
explains their measurable but secondary impact on perfor-
mance. As shown in Figures 2 and 3, in most benchmarks,
increasing the size of the TLBs provides a more substan-
tial performance improvement than increasing the size of
the page walk caches. For instance, the dijkstra benchmark,
which heavily accesses data, saw a 43% performance im-
provement from enlarging the DTLB, compared to only a 9%
improvement from increasing the DWC.

However, increasing the size of hardware components af-
fects power consumption, chip area, and overall design cost.
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Figure 3. IWC (top) & DWC (bottom) performance comparison.

Figures 2 and 3 also show that beyond a certain size thresh-
old, performance gains taper off, as indicated by the nearly
flat (parallel to the x-axis) lines across most benchmarks.
Specifically, minimal performance improvement is observed
beyond the points at which the ITLB has 32 entries, the DTLB
has 64 entries, the IWC is 512B, and the DWC is 1kB in the
corresponding graphs. Aiming towards cost-efficiency of
the used hardware, we construct the optimal configuration
with these exact sizes. Figure 4 shows that our cost-efficient
configuration only pessimizes performance ≈ 1.11% on av-
erage, with a maximal loss of ≈ 3.5% for a single outlier
benchmark. This is an attractive tradeoff; we have reduced
the ITLB by 4x, the DTLB by 2x, the IWC by 4x, and the
DWC by 2x—significantly affecting chip area and design
complexity—while only missing out on slightly more than
1% of performance on average.

5 Related Work
The RISC-V H extension is a relatively recent addition to the
privileged architecture of the RISC-V ISA, officially ratified
in December 2021 [4]. This extension introduces significant
opportunities for both academia and industry to explore ad-
vanced virtualization features within the RISC-V ecosystem.

Several projects have been initiated to integrate the hypervi-
sor extension into different hardware models [10]. From a
hardware standpoint, functional support for the H extension
has been implemented in gem5 [11], while hardware imple-
mentations based on in-order CPUs in the Rocket core [16],
the CVA6 core [17], and the Lagarto I core [12]. Beyond hard-
ware, software tools and simulators have also adopted the
hypervisor extension. For example, QEMU [8], a widely used
open-source emulator, and Spike [5], the official RISC-V ISA
simulator, both offer support for the H extension.

6 Conclusion & Future Work
In this paper, we presented a cycle-accurate timing model
of two-stage address translation for RISC-V integrated into
gem5’s out-of-order CPU. This model enables, for the first
time, a full cloud stack evaluation of Linux guest VMs un-
der the Xvisor type-1 hypervisor, capturing the performance
impact of two-stage page walks with instruction and data
page-walk caches (PWCs), L1 ITLB/DTLBs, and page-table
walkers (PTWs). Through systematic sensitivity studies us-
ing representative MiBench workloads, we quantified the
trade-offs between TLB and PWC sizes, identifying a cost-
efficient, near-optimal MMU configuration. Beyond these
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Figure 4. optimal (cost-efficient config) vs big (largest config) performance comparison.

specific results, our infrastructure demonstrates the ability
to extract detailed performance metrics and actionable in-
sights across a wide range of MMU configurations, providing
researchers and architects with a powerful tool to evaluate,
optimize, and guide the design of RISC-V cloud systems.

Looking forward, future work can explore adding models
for additional microarchitectural enhancements to acceler-
ate MMU functionality, such as more optimized page-walk
pipelines, prefetching strategies, various caching schemes,
and integration with speculative execution mechanisms. Ex-
tending the model to capture these features will provide
deeper insights into performance-criticalMMUdesign choices
and further enable realistic evaluations of RISC-V cloud in-
frastructures.
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