
NetTLMSim: A Virtual Prototype Simulator for Large-Scale
Accelerator Networks

Junsu Heo
Konkuk University
Seoul, South Korea

junsuheo@konkuk.ac.kr

Shinyoung Kim
Konkuk University
Seoul, South Korea

shinyoungkim@konkuk.ac.kr

Hyeseong Shin
Konkuk University
Seoul, South Korea

hyeseongshin@konkuk.ac.kr

Jaesuk Lee
Konkuk University
Seoul, South Korea

jaesuki98@konkuk.ac.kr

Sungkyung Park
Pusan National University

Busan, South Korea
fspark@pusan.ac.kr

Chester Sungchung Park
Konkuk University
Seoul, South Korea

chester@konkuk.ac.kr

ABSTRACT
This paper presents NetTLMSim, a virtual prototype SystemC transaction-
level modeling (TLM) simulator for accurate and efficient power-
performance-area (PPA) prediction in large-scale accelerator net-
works. Conventional analytical models often fail to predict PPA
accurately due to their lack of capability to capture dynamic net-
work traffic, such as contention, and thus tend to lead to the sub-
optimal design options when applied to design space exploration
(DSE). NetTLMSim addresses this limitation through cycle-accurate
modeling of dynamic traffic in accelerator networks, e.g., reduc-
ing delay prediction error by up to 52.8%. In this paper, NetTLM-
Sim is integrated into an existing DSE framework for Transformer
layer-pipeline spatial mapping (LP-SM), resulting in up to 39.3%
lower network delay compared to the state-of-the-art framework.
To further enhance the efficiency, we propose a set of simulation
modeling strategies that combine computation skipping, module-
specific transaction fidelity, and pass sampling. When applied to
the DSE for Transformer LP-SM, it improves runtime by up to 497×
over the conventional framework. The NetTLMSim is open-sourced
at https://github.com/SDL-KU/NetTLMSim

KEYWORDS
Deep Neural Network Accelerator, Simulation, Network-on-chip

1 INTRODUCTION
Deep neural networks (DNNs) have emerged as essential elements
across diverse application domains, including image recognition
[9, 18], object detection [26, 30], and natural language processing
(NLP) [3, 10]. Driven by the need for adaptability to increasingly
complex scenarios, modern DNNs continue to increase in depth,
resulting in a growing number of layers. Advanced DNNs such as
BERT for NLP and large language models (LLMs) clearly demon-
strate this trend. For instance, BERT Large contains approximately
340 million parameters, a scale that typically exceeds available on-
chip memory capacities. Such DNN models achieve unprecedented
performance but require significant computational resources and
efficient execution strategies due to their large depth and parameter
count.

To meet the increasing computational demands of deeper neural
networks, layer-pipeline spatial mapping (LP-SM) techniques have
been proposed [11, 27]. The relevant inter-layer scheduling has been
extensively studied [4], as it plays a critical role in achieving high

DRAM

L2L1 L5

L3

L4

D D DD

L0

Figure 1: Prediction inaccuracy in the analytical model. Left:
Example layer dependency graph of a DNN workload. Right:
Analytical model predicted delay and actual delay for differ-
ent LP-SMs.

resource utilization and data reuse when deploying DNN onto large-
scale accelerator networks. The detailed LP-SM partitioning and
pipelining have been presented in prior work, e.g., [5]. Nevertheless,
to the best of the authors’ knowledge, the optimization of LP-SM
still remains to be an open problem since the corresponding design
space is extremely large. For instance, the LP-SM design space for
the DNN layers depicted in the left side of Fig. 1 turns out to contain
approximately 36! × 45, thereby rendering the exhaustive search
infeasible. Moreover, the optimization of mapping pipelined layers
to computing cores is known to be an NP-hard problem [22].

Another challenge is to accurately predict the delay of large-scale
accelerator networks. Most of the existing design space exploration
(DSE) frameworks rely on the analytical models to quickly predict
the network delay for a candidate spatial mapping [5, 17, 19, 20, 24].
However, these analytical models often make oversimplifying as-
sumptions that limit their prediction accuracy. For instance, the
analytical models typically abstract away critical dynamic traffic
such as network contention. Consequently, as shown in the right
side of Fig. 1, two different LP-SMs might appear to have identi-
cal delays under such coarse analytical modeling (i.e., modeling
without dynamic traffic), while actual delays differ significantly.
Such discrepancies can severely mislead the corresponding DSE,
undermining the efficacy of DSE.

In summary, this paper makes the following contributions:

CAMS’25, October, 2025, Seoul, Republic of Korea Junsu Heo, Shinyoung Kim, Hyeseong Shin, Jaesuk Lee, Sungkyung Park, and Chester Sungchung Park

Network
I/F

Datapath
Buffer

SRAM
VMAC

Core 11

DMA

RISC-V

Router

RISC-V

Network
I/F

Interconnect

Router

: Router

: Computing
 core

: I/O chiplet
 : NoC link

: D2D link
 : DRAM link

: Computing
 chiplet

D
R
A
M
1

D
R
A
M
3

D
R
A
M
2

D
R
A
M
0

M
em

ory
C

ontroller

Figure 2: Architecture of large-scale accelerator network.

• We propose NetTLMSim, a virtual prototype full-system sim-
ulator that simulates the whole system of the large-scale ac-
celerator network based on SystemC transaction level model-
ing (TLM) [23]. NetTLMSim achieves a substantial reduction
in the prediction error of the state-of-the-art analytical delay
models, by up to 52.8%, through its cycle-accurate modeling
of dynamic traffic of an accelerator network.

• In order to evaluate the effectiveness of precise power-performance-
area (PPA) prediction, NetTLMSim was integrated into a
state-of-the-art DSE framework, resulting in up to a 37.8%
reduction in network delay. Furthermore, the adoption of
multi-fidelity modeling led to an exploration speedup of up
to 200× compared to the baseline framework.

The remainder of this paper is organized as follows. Section 2
reviews background and related works. Section 3 presents Net-
TLMSim, a virtual prototype full-system simulator for large-scale
accelerator networks. Section 4 provides the experimental results,
highlighting the impact of the accurate PPA prediction. Finally,
Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORKS
2.1 Large-Scale Accelerator Network
Recent works such as Simba [27, 33], TPU [12], and Tianjic [7] have
introduced large-scale accelerator network architectures to meet
the increasing demand for high-throughput DNN inference. As de-
scribed in Fig. 2, the state-of-the-art accelerator networks typically
comprise one or more I/O chiplets and multiple computing chiplets
that communicate through high-bandwidth die-to-die (D2D) links
implemented on the package substrate [25]. Each I/O chiplet inte-
grates a memory controller for DRAM access and connects to the
computing chiplets through D2D interfaces. Each compute chiplet
hosts an array of computing cores; every core integrates (i) a vector
MAC (VMAC) datapath for pipelined layer execution, (ii) a local
SRAM buffer for operand tensors, (iii) a DMA engine, and (iv) a
network interface. The on-chip network (NoC) employs routers
arranged in a 2-D mesh topology, offering bidirectional NoC links
as well as D2D ports in all four cardinal directions. A network inter-
face translates Advanced eXtensible Interface(AXI)-based intra-core
transactions [1], adopted from Simba [33], into inter-core or core-
to-DRAM messages. A dedicated RISC-V processor then schedules
and orchestrates the resulting transfers.

2.2 Design Space Exploration
Design space exploration (DSE) plays a critical role in identifying
efficient mappings for large-scale accelerator networks, where both
hardware and dataflow parameters must be jointly optimized to

maximize performance and resource utilization. Among the various
scheduling strategies considered in DSE, LP-SM has become increas-
ingly important with the growing scale of deep neural network
(DNN) accelerators [4, 11, 27]. LP-SM extends beyond intra-layer
scheduling [17, 19, 20, 24, 31] by orchestrating inter-layer execution
across multiple processing elements in the network. In this work,
LP-SM refers to the combination of the core group assigned to each
pipelined operation at a specific core and the flow of data that deter-
mines where operand tensors are stored [5]. These core group and
flow of data pairs form the fundamental source–destination rela-
tionships that guide both computation and communication within
the accelerator network.

2.3 PPA Prediction
The accuracy and the PPA prediction runtime of PPAmodels widely
vary depending on the modeling details [16].

2.3.1 Analytical Model. The state-of-the-art PPA model for LP-SM
in the Gemini framework [5] estimates delay as the maximum of
computation and communication components. Computation de-
lay is derived from the operation count of each pipelined layer
divided by its throughput, while communication delay is computed
from the data volume over each link or DRAM divided by the
corresponding bandwidth. This average-rate approximation is com-
putationally inexpensive but overlooks important effects such as
network contention (e.g., head-of-line blocking and back-pressure)
and per-hop pipeline/arbitration dely. These unmodeled effects ac-
cumulate under heavy load, leading to significant prediction errors
and potentially steering the DSE toward suboptimal design choices.

2.3.2 Simulator. Simulation-based PPA predictions generally achieve
smaller errors than analytical models [2, 6, 21]. However, as acceler-
ator networks scale up, the runtime of virtual prototype simulators
becomes prohibitively large for DSE [28]. To address this chal-
lenge, we adopt a virtual prototype full-system simulator based
on SystemC/TLM 2.0, which is known to be 100–10,000× faster
than RTL simulation [23]. Transaction-level modeling (TLM) has
been successfully applied in prior work to efficiently estimate com-
munication performance in accelerators [14, 15], demonstrating
its capability to capture system-level behavior at high speed. Our
proposed simulator follows this approach, enabling accurate yet
fast delay estimation suitable for large-scale accelerator network
exploration.

3 NETTLMSIM
3.1 Simulator Overview
NetTLMSim is a virtual prototype simulation framework for large-
scale accelerator networks, built on a modular architecture to flexi-
bly model both hardware (HW) and software (SW) aspects of the
system. As shown in Fig. 3(a), the simulation process (Fig. 3(a))
begins by parsing multiple configuration inputs, including algo-
rithm, LP-SM, dataflow, and architecture settings. The architecture
configuration defines the structural composition of the network,
such as topology, link bandwidth, and component organization,
while the other inputs specify execution behavior and dataflow.
These parameters are passed through the operational dependency

NetTLMSim: A Virtual Prototype Simulator for Large-Scale Accelerator Networks CAMS’25, October, 2025, Seoul, Republic of Korea

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

Figure 3: Simulator overview.

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

Figure 4: Component-based modeling.

analysis, module generation and instantiation, and runtime be-
havior configuration stages before launching the SystemC kernel
(sc_start()).

During execution, NetTLMSim collects detailed performance
statistics—latency, throughput, bottleneck locations, network con-
tention, and simulation traces—providing deep insight into system
behavior.

NetTLMSim can also be integrated into a DSE environment as
a performance evaluation back-end, as illustrated in Fig. 3(b). The
DSE framework explores the design space across multiple levels—
algorithm, dataflow, and architecture search—by generating candi-
date configurations and passing them to NetTLMSim, which returns
precise performance and simulation observations. This integration
allows the exploration process to converge toward optimal or near-
optimal designs, while maintaining flexibility to architectural and
control options without modifying the simulation infrastructure.

3.2 Component-Based Modeling for Flexible
System Configuration

NetTLMSim adopts a component-based modeling approach to en-
able fast and efficient construction of diverse accelerator network
configurations. Each hardware block—such as computing cores
and memories—is modeled as an independent component with pre-
defined interfaces. As illustrated in Fig. 4(a), these components are
instantiated and interconnected within the testbench according to
the target architecture.

Within each component, individual modules can be selectively
activated, deactivated, or replicated according to the intended func-
tionality. For example, when modeling a PE, computation datapaths

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

Figure 5: Network-on-Chip and interconnect modeling.

and local buffers can be enabled while unused modules are disabled
to reduce simulation complexity. Similarly, the same base compo-
nent template can be repurposed as a GB by enabling only the
required buffer modules and configuring the necessary number of
network interfaces (NIs). As shown in Fig. 4(b), a GB may connect
to multiple routers in the network, and thus requires multiple NIs
to interface with each router.

Routers, in contrast, are placed outside of the component tem-
plates to maximize flexibility in network topology design. This
separation allows the simulator to independently configure and in-
terconnect routers according to the desired NoC/NoP architecture,
making it straightforward to construct a wide variety of topologies
without altering the internal structure of other components.

By combining modular component templates with externally
configurable routers, NetTLMSim supports rapid and highly cus-
tomizable system composition, enabling efficient evaluation of di-
verse architectures.

3.3 Network-on-Chip and Interconnect
Modeling

While many modules in NetTLMSim share a similar modeling struc-
ture, this section focuses on modules related to communication as
representative examples—specifically the router and AXI intercon-
nect. These modules are modeled at the transaction level to capture
both functional correctness and performance characteristics such
as contention, arbitration delay, and resource utilization.

The router model, illustrated in Fig. 5(a), is modeled with a pa-
rameterizable number of input and output ports, enabling it to
support a wide range of network parameters. Each port is equipped
with both a TLM initiator socket and a target socket to support
bidirectional communication. The initiator socket is used to send
transactions forward to the next module, while the target socket
receives incoming transactions from the previous module. In this
design, the forward path is responsible for delivering data (e.g., flits)
toward their destination, and the backward path carries responses
or acknowledgments back to the source. This separation of forward
and backward paths allows NetTLMSim to accurately model the
timing and ordering of both data delivery and response propaga-
tion. Incoming flits are received into per-port FIFOs, triggering
SystemC events that invoke the main routing thread. This main

CAMS’25, October, 2025, Seoul, Republic of Korea Junsu Heo, Shinyoung Kim, Hyeseong Shin, Jaesuk Lee, Sungkyung Park, and Chester Sungchung Park

Table 1: Configurable parameters of an individual router in
NetTLMSim.

Parameters Description
flow_cntl Flow control
sw_arb arbitration policy for switch allocation
len_pkt Maximum length of a packet
bitw_flit Bitwidth of a flit
bitw_port Bitwidth of a port
clk_router Clock period of router
clk_port Clock period of a I/O port
delay_vc_alloc Latency for virtual channel allocation
delay_sw_alloc Latency for switch allocation
delay_credit Latency for credit input to credit update
delay_hop Latency per hop traversal
num_vc Number of an virtual channel per port
depth_vc FIFO depth of a single virtual channel

thread performs three sequential stages: route computation (RC),
virtual channel/switch allocation (SA), and flit switching/traversal
(ST). Route computation determines the next hop based on the con-
figured routing table and algorithm (e.g., DOR X–Y), while switch
allocation resolves contention among incoming flits targeting the
same output port. Traversal transfers flits across the internal cross-
bar to the designated output FIFO. All stages are synchronized with
the simulation clock, ensuring accurate modeling of pipeline delays
and contention effects. Parameters such as flow control, arbitration
policy, virtual channel depth, and allocation delays—summarized
in Table 3—are fully configurable, allowing exploration of different
network microarchitectures.

The AXI interconnect model, illustrated in Fig. 5(b) and (c), sup-
ports multiple master and slave ports and implements the AXI pro-
tocol’s separate channels for read/write address, write data, read
data, and write response. Each channel is represented with dedi-
cated threads and events to accurately capture handshake timing
and transaction behavior. As shown in Fig. 5(b), the interconnect is
organized into two main switch stages: MtoS (master-to-slave) and
StoM (slave-to-master).

Fig. 5(c) provides a detailed view of an individual switch module
used within these stages. Each switch contains separate submodules
for each channel (e.g., AR, AW, W, R, B), each with its own thread
to process transactions and FIFOs for buffering. Switch modules
arbitrate between concurrent requests from multiple ports, and pa-
rameters such as arbitration policy, transaction latency, and buffer
depth are fully configurable to match specific design requirements.
This modular switch design allows the interconnect to scale effi-
ciently while maintaining accurate per-channel modeling of AXI
protocol behavior.

By combining these detailed communication module models,
NetTLMSim provides a accurate representation of diverse on-chip
network configurations. This enables thorough performance analy-
sis under varying workloads and architectural parameters, while
maintaining consistency with the configurable network parameter.

clk

ARVALID

ARREADY

RVALID

RDATA

ARADDR

RREADY

RLAST

Initiator

Target

B
E
G
I
N
_
R
E
Q

B
E
G
I
N
_
R
E
S
P

E
N
D
_
R
E
S
P

E
N
D
_
R
E
Q

R
R
E
A
D
Y

R
V
A
L
I
D

R
R
E
A
D
Y

R
V
A
L
I
D

R
R
E
A
D
Y

R
V
A
L
I
D

clk

ARVALID

ARREADY

RVALID

RDATA

ARADDR

RREADY

RLAST

Initiator

Target

B
E
G
I
N
_
R
E
Q

B
E
G
I
N
_
R
E
S
P

E
N
D
_
R
E
S
P

E
N
D
_
R
E
Q

clk

ARVALID

ARREADY

RVALID

RDATA

ARADDR

RREADY

RLAST

Initiator

Target

B
E
G
I
N
_
R
E
S
P

B
E
G
I
N
_
R
E
Q

Four-phase modeTwo-phase mode AXI phase mode

R
T

L
–

s
im

u
la

ti
o

n
N

e
tT

L
M

S
im

1
2 2

3

1
2

21 1 2

3

= Master

= Slave

Cycle accurate!

(a) (b) (c)

Figure 6: Comparison of transaction-level modeling modes
in NetTLMSim: (a) Two-phase, (b) Four-phase, and (c) AXI
phase.

3.4 Simulation Modeling Strategies
To flexibly balance simulation accuracy and runtime, NetTLMSim
provides three complementary simulationmodeling strategies. Each
strategy offers distinct trade-offs between prediction accuracy and
simulation speed, enabling users to select appropriate modes de-
pending on the stage and purpose of DSE. The strategies are:

(1) Computation skipping: By default, NetTLMSim ensures
functional correctness by performing actual computations between
activations and weights in the neural network workload. In scenar-
ios where functional verification is unnecessary, a computation-
skipping mode can be enabled. In this mode, arithmetic operations
are bypassed and replacedwith estimated execution latencies, reduc-
ing simulation time significantly for computation-heavy workloads.

(2) Module-specific transaction fidelity: The transaction-
level modeling fidelity can be independently configured for each
module in the accelerator network. Modules with low performance
sensitivity can use coarser-grained abstraction, while timing-critical
modules employ cycle-accurate modeling. As shown in Fig. ??, Net-
TLMSim supports two-phase, four-phase, and AXI phase modes.
The AXI phase mode augments the standard four-phase handshake
with additional protocol phases to accurately capture beat-level
handshake delays in interfaces such as DRAM controllers.

(3) Pass sampling: In NetTLMSim-Full, all pipeline passes are
simulated with full detail. For example, in a workload with 70 passes,
passes 7–63 may share identical execution behavior; all are mod-
eled in NetTLMSim-Full, though redundant passes reuse the first
simulation’s timing. As illustrated in Fig. 7, each pass consists of
a sequence of load, compute, and store operations across multiple
cores and DRAM modules, with many passes exhibiting identical
timing patterns. In contrast, NetTLMSim-Fast selects a single rep-
resentative pass from the entire workload and simulates only that
pass in detail, skipping the rest. Because the execution patterns
of the skipped passes are equivalent to the simulated one, this ap-
proach significantly accelerates simulation while maintaining close
correlation with NetTLMSim-Full results.

As summarized in Table 2, each strategy can be tuned to achieve
different points in the accuracy–speed space. In practice, combin-
ing these strategies allows tailoring the simulator to specific DSE
phases—for instance, using faster, lower-fidelity settings during
early exploration, and switching to slower, high-fidelity modes for
final design validation.

NetTLMSim: A Virtual Prototype Simulator for Large-Scale Accelerator Networks CAMS’25, October, 2025, Seoul, Republic of Korea

DRAM3

DRAM1

Core
30

Core
31

Core
35

0 1

0

0 1

0

2

1

0

3

2

1

4

3

2

0 1

0

3

2

1

5

4

3

4

3

2

6

5

4

0

2

1

2

1

0

5

4

3

7

6

5

1

3

2

n-2

n-3

n-4

n

n-2

n-6

n-4

62

61

60

63

62

58

60

63

62

61

63

59

61

63

62

60

62

63

61

63

62 63

Seq. 2

Seq. 1

Load

Compute

Store Sequence 0

DoneGo

Seq. 1

Seq. 0

DoneGo

S
y

s
te

m

C
o

re
 3

0

Pass # 0 1 3 4 5 62 7 n 64 65 66 67 68 69

0 0 0 0 0 0 0 0 0

DRAM

Layer 2

Layer 1

DRAM

Layer 0

0 1 n-6 58 59 60 61 6362

⋯

n-5 59 60 61 62 63

n-1

Figure 7: Timing diagram of large-scale accelerator network
under an example LP-SM.

Table 2: Trade-offs between accuracy and speed for NetTLM-
Sim strategies and modes.

Strategy Mode Accuracy Speed
Computation skipping Full computation High Low

Skip computation Medium High
Module-specific fidelity AXI phase High Low

Four-phase High–Med Med
Two-phase Medium High

Pass sampling NetTLMSim-Full High Low
NetTLMSim-Fast High–Med High

3.5 Simulator Extensibility
NetTLMSim offers high extensibility, enabling seamless integration
with both commercial tools and academic research frameworks.
First of all, it can be easily plugged into the commercial simula-
tion libraries such as Synopsys’s Platform Architect[29] through
module-level plug-in, allowing interoperability with existing sim-
ulation IPs without modification. This compatibility ensures that
NetTLMSim can be readily incorporated into established virtual
prototyping workflows alongside other performance models and
architectural components. For academic research frameworks, Net-
TLMSim can be readily applied to the existing DSE frameworks
such as Gemini[5]. A compact interface script enables input and
output log exchange via files, requiring no invasive changes to
the DSE infrastructure. This flexibility allows rapid deployment
of NetTLMSim in various exploration pipelines while preserving
accuracy and minimizing integration effort.

4 SIMULATION RESULTS
4.1 Experimental Setup
The DSE parameters considered in this study and their correspond-
ing values are summarized in Table 3. To focus on analyzing the
impact of LP-SM on network delay, all hardware and other design
parameters except LP-SM were fixed to a single configuration. The
workload used is the BERT-Large[8] model adopted from Gemini,
with dimensions and layer configurations unchanged. Additionally,
the layer grouping, partitioning, and hardware parameters from the
optimal design point identified by the Gemini DSE framework were
directly adopted. Most parameters not listed in the table were taken

Table 3: DSE parameters

System

No. Chiplets in the X-direction 1
No. Chiplets in the Y-direction 2
No. Cores in the X-direction 6
No. Cores in the Y-direction 6

No. DRAM Devices 4
DRAM Bandwidth per Device 32 GB/s

Clock Frequency 1 GHz

Network

Topology Mesh
Routing Algorithm X-Y DOR

Flow Control Wormhole (unicast),
Cut-through (multicast)

Multicast Routing Tree-based

Bandwidth 32 GB/s (NoC link),
16 GB/s (D2D link)

Core No. MAC Units 1024
SRAM Capacity 2 MB

0 1 2 3
Actual Delay (ns) #106

0

1

2

3

P
re

di
ct

ed
 D

el
ay

 (
ns

)

#106

0.1

0.2

0.3

0.4

0.5

Error

(a) Analytical Model
Pearson Corr.=0.564

0 1 2 3
Actual Delay (ns) #106

0

1

2

3

P
re

di
ct

ed
 D

el
ay

 (
ns

)

#106

0.1

0.2

0.3

0.4

0.5

Error

(b) NetTLMSim-Fast
Pearson Corr.=0.997

Figure 8: Delay prediction error for 30,000 LP-SMs obtained
from 10 DSE runs.

from Gemini[5] and SIMBA[27], while the core configuration fol-
lows MAGNet[31] and the NoC router is based on the assumptions
from Matchlib[13].

4.2 Accuracy–Speed Trade-offs in Delay
Prediction

Fig. 8(a) shows that the analytical model exhibits low correlation
with the actual delay (Pearson Corr. = 0.564) and incurs a predic-
tion error of up to 52.8%. Such inaccuracy can lead to erroneous
delay predictions for design options in DSE, thereby reducing the
likelihood of identifying optimal or near-optimal configurations. In
contrast, Fig. 8(b) shows that delays predicted by NetTLMSim-Fast
have a high correlation with the actual delay (Pearson Corr.=0.997),
demonstrating its capability to closely approximate real delay val-
ues. NetTLMSim-Full, whichmodels execution in full cycle-accurate
detail, produces delays identical to the actual delay, ensuring maxi-
mum prediction accuracy but at a higher simulation cost (13–20 s).
In comparison, NetTLMSim-Fast achieves a similar level of accuracy
with significantly lower prediction time (1.5–3 s), while the analyti-
cal model offers the fastest prediction (150–200 ms) but with low
accuracy. As summarized in Table 4, these results highlight the clear
trade-off between accuracy and performance, with NetTLMSim-
Fast providing a balanced option for use in DSE.

CAMS’25, October, 2025, Seoul, Republic of Korea Junsu Heo, Shinyoung Kim, Hyeseong Shin, Jaesuk Lee, Sungkyung Park, and Chester Sungchung Park

Table 4: Prediction speed of different delay predictions.

Delay Prediction Prediction Speed
Analytical model 150-200 ms
NetTLMSim-Fast 1.5-3 s
NetTLMSim-Full 13-20 s

4.3 Impact of Delay Prediction Accuracy on DSE
Efficiency

Fig. 9 shows the delay distributions of the best LP-SMs identified
using each delay prediction method at three different exploration
times: 10, 30, and 90 minutes. When the analytical model is used,
the distribution remains broad throughout the exploration process,
indicating that the predicted performance of the selected LP-SMs
varies widely from the actual performance. This wide spread is a
direct consequence of the prediction errors inherent to the analyti-
cal model, which cause the DSE to misjudge the relative quality of
candidate designs. As a result, many designs that appear promising
in the prediction phase turn out to be far from the true optimum
when evaluated accurately. In contrast, NetTLMSim based predic-
tions exhibit a much narrower distribution, with most selected
LP-SMs yielding performance near the theoretical limit given by
the Roofline model [32].

To fairly compare prediction methods under such variability, we
adopt the 99th percentile delay as a robust performance metric.
Unlike the minimum or average delay, which may be skewed by
outliers or overly optimistic predictions, the 99th percentile delay
provides a conservative and reliable estimate of the best achievable
performance that the DSE method can consistently guarantee. This
is especially important in cases like the analytical model, where poor
prediction accuracy can result in wide and misleading distributions.

Fig. 10 compares the 99th percentile delays obtained by DSEs
using the analytical model and NetTLMSim. Fig. 10(a) summarizes
the results of 90-minute DSE runs for each layer group in the Trans-
former encoder block. NetTLMSim yields a substantial reduction
for layer groups 0 and 1, because communication delay dominates
computation delay. A more detailed view of layer group 0 is shown
in Fig. 10(b), where each curve reports the 99th-percentile delay
over 100 independent DSE runs. With the analytical model, the
99th-percentile remains essentially flat, indicating limited ability
to surface better designs. In contrast, with NetTLMSim-Fast the
99th-percentile decreases consistently and, after 90 minutes, deliv-
ers an LP-SM with 39.3% lower delay than the analytical model.
Although NetTLMSim-Fast offers lower per-prediction speed than
the analytical model (Table 4), its higher sample efficiency yields
faster convergence.

Fig. 11 extends this comparison by measuring the runtime re-
quired for each method to achieve a target delay with 99% prob-
ability. This metric captures the combined effects of prediction
accuracy and search efficiency. The analytical model’s inaccuracies
cause the required DSE runtime to grow rapidly as the target delay
approaches the theoretical limit, leading to an extreme disparity—
497× increase for the DSE runtime required to reach a target delay
within 5% of the theoretical limit—compared to the NetTLMSim-
Fast. In contrast, NetTLMSim-Fast maintains a much lower runtime

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

39.3%39.3%

497×

Figure 9: Delay distributions of the best LP-SMs found using
each delay prediction

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c
h

to
S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

39.3%39.3%

497×

(a)

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

39.3%39.3%

497×

Theoretical Limit

(b)

Figure 10: Comparison between DSEs with analytical model
and NetTLMSim. (a) DSE results after 90 minutes for each
layer group in Transformer. (b) DSE results for layer group 0.

Module
Generation &
Instantiation

Runtime
Behavior

Configuration

Arch. Config.

sc_start()

Operational
Dependency

Analysis

Alg. Config.

NetTLMSim

ü Latency

ü Throughput

ü Bottleneck
Information

ü Network
Contention

ü Simulation
Trace

DF Config.

LP-SM

v2

Hardware Design RTL Simulation

N
e

tT
L

M
S

im

Design
Space

Design
Search

Architecture
Search

Dataflow
Search

Algorithm
Search

ü Model Architecture
ü Layer Dimensions

ü Partition
ü Core Group
ü Flow of Data

ü No. of MACs, PEs, Cores
ü NoP/NoC Bandwidth
ü Routing & Flow Control

Performance
& Simulation
Observation

ü Specifications
ü Constraints

(a) Simulation Process (b) Framework

Controller

Datapath

In
te

rc
o

n
n

e
c

t

Network
Interface

(NI)

Router
(R)

Buffer
Group

× NRouter

× NBufferGroup × NDatapath

Component Template

DMA

(b) Component Template(a) Testbench

M
e

m
o

ry
 C

o
m

p
o

n
e

n
t

NI

Router
(R)

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

Dpath.
Comp.

NI

R

NI

R

StoMK-1

MtoSL-1

X_THREADX_THREAD

X_THREADX_THREAD

X_THREAD

X_THREAD

X_THREADX_THREAD

ev_x_vld

AR_THREAD

R_THREAD

AW_THREAD

W_THREAD

B_THREAD

M
to

s
w

it
c

h

s
w

it
c

h
to

S

IF_
bw

IF_
fw

Received
payloads

Event Flags

IF_
bw

IF_
fw

AW_FIFO

×K

×L

×K

×L

×K

×L

IBUF_THREAD

MAIN_

THREAD

X_THREADOBUF_THREAD

× NInputPort × NOutputPort

Router
RC

IBUF_THREAD

X_THREADOBUF_THREAD

IBUF_THREAD

X_THREADOBUF_THREAD

SA ST

M0

M
to

s
w

it
c

h

MtoS0

StoM0

s
w

it
c

h
to

S S0

MK-1 SL-1MtoSL-1

StoMK-1

AXI Interconnect

(a) Router

(b) AXI Interconnect (c) Switch

: Initiator socket

: Target socket

: Forward

 interface

: Backward

 interface

: Event

: Array

: Flags

: Thread

: FIFO

: Variable

: Function

39.3%39.3%

497×

Figure 11: DSE runtime required to meet the target delay
with 99% probability.

across all target delay thresholds, as its accurate predictions consis-
tently guide the DSE toward high-quality designs without wasted
exploration on misleading candidates. This result reinforces the cen-
tral finding: improving delay prediction accuracy translates directly
into faster, more reliable attainment of near-optimal performance
in DSE.

5 CONCLUSION
In this work, NetTLMSim is introduced as a virtual prototype simu-
lator designed to improve PPA prediction accuracy in large-scale
accelerator networks. By explicitly modeling dynamic network traf-
fic, including contention effects, it reduces delay prediction error
by up to 52.8% compared to conventional analytical models. Inte-
gration with a Transformer LP-SM DSE framework demonstrates
that accurate PPA prediction enables more effective exploration,
achieving up to 39.3% lower network delay over a state-of-the-art

NetTLMSim: A Virtual Prototype Simulator for Large-Scale Accelerator Networks CAMS’25, October, 2025, Seoul, Republic of Korea

framework. A set of simulation modeling strategies, which combine
computation skipping, module-specific transaction fidelity, and pass
sampling, is also proposed, accelerating exploration by up to 497×
over the conventional DSE framework. These results demonstrate
that accurate and efficient simulation can significantly enhance
the effectiveness of DSE in large-scale accelerator networks. As
future work, the simulation logs generated by NetTLMSim will be
leveraged to train AI/ML-based models, enabling log-driven DSE
that can further improve exploration speed and quality.

ACKNOWLEDGMENT
This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. RS-2023-00222085, Development
of memory module and memory compiler for non-volatile PIM
optimized for data characteristics and data access characteristics of
AI processor.)

REFERENCES
[1] ARM. 2017. AMBA AXI and ACE Protocol Specification AXI3, AXI4, AXI5, ACE

and ACE5. https://arm.com
[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Jingwei Cai, Yuchen Wei, Zuotong Wu, Sen Peng, and Kaisheng Ma. 2023. Inter-
layer scheduling space definition and exploration for tiled accelerators. In Pro-
ceedings of the 50th Annual International Symposium on Computer Architecture.
1–17.

[5] Jingwei Cai, Zuotong Wu, Sen Peng, Yuchen Wei, Zhanhong Tan, Guiming Shi,
Mingyu Gao, and Kaisheng Ma. 2024. Gemini: Mapping and Architecture Co-
exploration for Large-scale DNN Chiplet Accelerators. In 2024 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 156–171. https:
//doi.org/10.1109/HPCA57654.2024.00022

[6] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[7] Lei Deng, Guanrui Wang, Guoqi Li, Shuangchen Li, Ling Liang, Maohua Zhu,
Yujie Wu, Zheyu Yang, Zhe Zou, Jing Pei, et al. 2020. Tianjic: A unified and
scalable chip bridging spike-based and continuous neural computation. IEEE
Journal of Solid-State Circuits 55, 8 (2020), 2228–2246.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the North American chapter of the association
for computational linguistics: human language technologies, volume 1 (long and
short papers). 4171–4186.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[11] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
Tangram: Optimized coarse-grained dataflow for scalable nn accelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 807–820.

[12] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1–12.

[13] Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,
Yakun Sophia Shao, et al. 2018. A modular digital VLSI flow for high-productivity
SoC design. In Proceedings of the 55th Annual Design Automation Conference. 1–6.

[14] Sunwoo Kim, Sungkyung Park, and Chester Sungchung Park. 2021. System-level
communication performance estimation for DMA-controlled accelerators. IEEE
Access 9 (2021), 141389–141402.

[15] Sunwoo Kim, Jooho Wang, Youngho Seo, Sanghun Lee, Yeji Park, Sungkyung
Park, and Chester Sungchung Park. 2020. Transaction-level model simulator for
communication-limited accelerators. arXiv preprint arXiv:2007.14897 (2020).

[16] Srivatsan Krishnan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour,
Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian, Daniel Richins,
Devashree Tripathy, Aleksandra Faust, et al. 2023. Archgym: An open-source
gymnasium for machine learning assisted architecture design. In Proceedings of
the 50th Annual International Symposium on Computer Architecture. 1–16.

[17] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding reuse, performance, and
hardware cost of dnn dataflow: A data-centric approach. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. 754–768.

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer us-
ing shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision. 10012–10022.

[19] Liqiang Lu, Naiqing Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo, Jieming
Yin, Jason Cong, and Yun Liang. 2021. Tenet: A framework for modeling tensor
dataflow based on relation-centric notation. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 720–733.

[20] Liqiang Lu, Zizhang Luo, Size Zheng, Jieming Yin, Jason Cong, Yun Liang, and
Jianwei Yin. 2023. Rubick: A Unified Infrastructure for Analyzing, Exploring,
and Implementing Spatial Architectures via Dataflow Decomposition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 43, 4
(2023), 1177–1190.

[21] Francisco Muñoz-Martínez, José L Abellán, Manuel E Acacio, and Tushar Kr-
ishna. 2021. Stonne: Enabling cycle-level microarchitectural simulation for dnn
inference accelerators. In 2021 IEEE International Symposium on Workload Char-
acterization (IISWC). IEEE, 201–213.

[22] Umit Y Ogras, Jingcao Hu, and Radu Marculescu. 2005. Key research problems
in NoC design: a holistic perspective. In Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis. 69–
74.

[23] OSCI, Open SystemC Initiative (OSCI). 2008. TLM–2.0 User Manual.
[24] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[25] John W Poulton, John M Wilson, Walker J Turner, Brian Zimmer, Xi Chen,
Sudhir S Kudva, Sanquan Song, Stephen G Tell, Nikola Nedovic, Wenxu Zhao,
et al. 2018. A 1.17-pJ/b, 25-Gb/s/pin ground-referenced single-ended serial link for
off-and on-package communication using a process-and temperature-adaptive
voltage regulator. IEEE Journal of Solid-State Circuits 54, 1 (2018), 43–54.

[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[27] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scal-
ing Deep-Learning Inference with Multi-Chip-Module-Based Architecture. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 14–27. https://doi.org/10.1145/3352460.3358302

[28] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, and Norbert Wehn.
2022. Dramsys4. 0: An open-source simulation framework for in-depth dram
analyses. International Journal of Parallel Programming 50, 2 (2022), 217–242.

[29] Synopsys, Inc. [n. d.]. Synopsys Platform Architect Ultra. https://www.synopsys.
com/verification/virtual-prototyping/platform-architect.html. Accessed: 2025-
08-06.

[30] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 10781–10790.

[31] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason Clemons,
Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2019. Magnet: A modular accelerator generator for neural
networks. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1–8.

[32] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (April 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[33] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. 2020. A 0.32–128 TOPS, scalable multi-chip-module-based

https://arm.com
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/HPCA57654.2024.00022
https://doi.org/10.1109/HPCA57654.2024.00022
https://doi.org/10.1145/3352460.3358302
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://doi.org/10.1145/1498765.1498785

CAMS’25, October, 2025, Seoul, Republic of Korea Junsu Heo, Shinyoung Kim, Hyeseong Shin, Jaesuk Lee, Sungkyung Park, and Chester Sungchung Park

deep neural network inference accelerator with ground-referenced signaling in 16 nm. IEEE Journal of Solid-State Circuits 55, 4 (2020), 920–932.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Large-Scale Accelerator Network
	2.2 Design Space Exploration
	2.3 PPA Prediction

	3 NetTLMSim
	3.1 Simulator Overview
	3.2 Component-Based Modeling for Flexible System Configuration
	3.3 Network-on-Chip and Interconnect Modeling
	3.4 Simulation Modeling Strategies
	3.5 Simulator Extensibility

	4 Simulation Results
	4.1 Experimental Setup
	4.2 Accuracy–Speed Trade-offs in Delay Prediction
	4.3 Impact of Delay Prediction Accuracy on DSE Efficiency

	5 Conclusion
	References

