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Abstract

In microarchitecture research, the standard approach involves im-
plementing and evaluating new designs within processor simula-
tors. However, leading simulators each take a different approach to
implementing crucial hardware components, such as the instruc-
tion pipeline, and most were not designed with code modifiabil-
ity in mind. Consequently, implementing a new microarchitecture
forces researchers to first master the complex internal design of a
simulator and then manually modify its code. This process often
results in a codebase that is difficult to comprehend and maintain.
In this paper, we demonstrate that the Entity Component System
(ECS), a software architecture pattern common in video game de-
velopment, is a highly effective model for structuring the timing
simulation of multi-stage pipeline architectures. We also present
Phalanx, a new, cycle-accurate processor simulator built from the
ground up on the ECS software architecture pattern.
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1 Introduction

In microarchitecture research, new techniques are typically eval-
uated by implementing them in a processor simulator. Existing

cycle-accurate simulators include gem5 [7], Sniper [3], ChampSim [4],

and an object-oriented simulator Onikiri2 [1].

To handle the complexity of modern instruction pipelines, these
simulators use a divide-and-conquer approach. This is often done
either by encapsulating the procedures for different pipeline stages
and instructions or by using object-oriented programming to de-
fine them as distinct objects. However, the unit of division varies
among simulators, making them difficult to understand. Addition-
ally, simulators have two main issues that complicate modification.
First, to change one functionality, we have to alter code that is
spread out in multiple places. Second, it is hard for us to define a
proper interface in advance.

To address these issues, we adopt a data-oriented software ar-
chitecture pattern known as the Entity Component System (ECS),
which has become widely used in video game development [11, 12].
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ECS has two main features: (1) composition over inheritance! and
(2) separation of data from its update procedures.

We found that these two features contribute to the ease of im-
plementation in processor pipeline timing simulators. The first fea-
ture, related to composition, enables researchers to implement new
methods in the simulator easily. For example, it simplifies extend-
ing the structure that represents instructions to add new informa-
tion. The second feature, related to separation, helps make it eas-
ier to understand the implementation of functionality that spans
multiple stages (e.g., pipeline flushes). This is because, rather than
implementing data update procedures separately for each stage to
achieve a functionality, we can consolidate them into a single up-
date procedure.

We present Phalanx, a cycle-accurate processor simulator de-
signed based on ECS. In Phalanx, the data structures correspond-
ing to the processor pipeline and the logic for updating the pipeline
are designed based on ECS. We also discuss the issues that arise
when adopting ECS into pipeline implementation and how to ad-
dress them.

Our contributions are as follows:

e We demonstrated the advantages of using ECS for pipeline
timing simulation.

e We presented a design and a systematic approach for adopt-
ing ECS to implement pipeline timing simulations.

e We demonstrated that a processor simulator implemented
using our approach operates at a speed comparable to that
of other simulators.

2 Problems in Existing Simulators

2.1 Scattered Implementations of Functionality

Existing processor simulators are designed so that code for a single
functionality is scattered across multiple locations, which makes it
difficult to identify which parts need to be modified. For example,
in gem5, the instruction wake-up® involves multiple classes across
source files. As another example, in ChampSim, the same process
is contained in a single class but implemented through various

!The idea that code reuse should be achieved through composition rather than inher-
itance in cases of a has-a relationship rather than an is-a relationship [2].
%In an out-of-order processor, instruction wake-up means a process of notifying that
an instruction has become ready to execute. In the simplest design, a notification is
sent to its dependent instructions when a producer instruction completes.
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method calls, which makes it difficult to understand which part
of the code implements a single functionality.

This issue is significant when implementing and evaluating mul-
tiple techniques. In research, the full scope of modifications is rarely
clear from the beginning, and useful techniques are often discov-
ered through trial and error. As a result, if understanding scattered
code is necessary each time a modification is made, the research
iteration slows down.

In addition, the mutability of states further complicates code
comprehension. This occurs when the code that implements a sin-
gle functionality is scattered, allowing the state to be updated from
multiple source locations. As a result, the behavior cannot be cor-
rectly understood unless we trace where, by whom, and in what
order updates occur in the code.

As an example, consider modeling the behavior of a pipeline
stall. When a stall occurs at some stage, upstream stages must also
be stalled. A circuit that implements this would be as shown in
Figure 1(a). If this is implemented in a design that treats pipeline
stages as objects in an object-oriented style, the code would take
the form shown in Figure 1(b) using the observer pattern. However,
it is not immediately apparent, just by looking at this code, what
specific events affect the stall variable.

2.2 Difficulty of Defining Interfaces

Even when we know precisely which parts of the code to modify, it
is difficult to make those changes without breaking the simulator.
The reason is that the predefined interfaces in processor simulators
are often insufficient for microarchitecture research, which, by its
nature, aims to find new techniques to improve processor perfor-
mance under specific constraints. Such techniques usually require
leveraging information from other hardware components, which
in turn necessitates extending existing interfaces.

For example, the RUNLTS branch predictor [6] uses register
values produced in the execution stage. It is essential to modify
the code to implement this method because processor simulators
rarely provide an interface for other parts of the system to read the
execution stage outputs.

Similarly, consider a cache replacement policy interface that re-
quires the set index and way number for each operation. While this
is sufficient for common algorithms, it is difficult to implement one
that deviates from this design, such as an algorithm that uses the
instruction address of a load instruction®. Consequently, we are of-
ten forced to add interfaces that diverge from the initial design to
implement new techniques.

When extending an interface beyond its original design, we end
up modifying internal information that was previously hidden. This
means that we must carefully design interfaces while considering
the invariants that the internal state is supposed to maintain. How-
ever, existing simulators often do not clearly state what these in-
variants for the internal state are. This forces us to investigate them
ourselves, creating an additional burden.

3Hawkeye cache replacement policy [5] is such an example.
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(a) Stall detection circuit for instruction pipeline stages.

class PipelineStage {

bool stall;
PipelineStage* previous_stage;
public:
virtual bool decide_stall() = 0;
void update() {
stall |= decide_stall();
if( stall ) { previous_stage->request_stall(); }

}
void request_stall() { stall = true; }
};

(b) Example written in an object-oriented style.

decide_rename_stall();
decide_decode_stall();
decide_fetch_stall();

bool rn_stl
bool dc_stl
bool f_stl

bool rename_stall
bool decode_stall
bool fetch_stall

(c) Example that mirrors the circuit implementation.

rn_stl;
dc_stl | rn_stl;
f_stl | dc_stl | rn_stl;

Figure 1: A circuit that implements pipeline stalls and exam-
ple simulation code. (a) The circuit computes the stall condi-
tion by aggregating signals from multiple stages. (b) Exam-
ple code that implements this behavior using the observer
pattern. (c) Example code that mirrors the circuit implemen-
tation.

3 Entity Component System (ECS)

3.1 Overview

ECS is a data-oriented software architecture pattern that has gained
popularity in the domain of video game development. We explain
its key concepts using examples from that domain.

In ECS, every distinct object in a video game is assigned an en-
tity. The term objects in a video game refers, for example, to char-
acters and items on the field in an action game, or to bullets in a
scrolling shooter game.

Each entity has an arbitrary combination of components. A com-
ponent is a data unit representing attribute data associated with
an entity. For example, the entity of a character or an item would
have a component for its current position. If its movement is gov-
erned by physics, it would have a component storing attributes
such as mass and velocity. Similarly, if it is intended to disappear
after a fixed time, it would have a component that stores its re-
maining lifetime. Figure 2(a) shows an example design of entities
and components for an action game. Because components are not
organized in an inheritance hierarchy, the design remains flexible
for the later addition of functionality.

A system is a function that modifies component data, and may
optionally include other data it requires. In ECS, behaviors are de-
coupled from components, which makes behaviors involving mul-
tiple components straightforward to express. These features help
maintain ECS-based software without unnecessary dependencies,
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both among components and between systems and components,
thereby improving the overall clarity of the code.

3.2 Advantages

3.2.1 Centralized Functionality. We can group all the code for a
single functionality together because ECS decouples functional-
ity from specific components. This enables such functionality to
be statically defined as a single procedure in one place. ECS also
clearly separates which components are part of a single function-
ality and which are not. This design makes the code implementing
any specific feature more straightforward to understand.

3.2.2  Streamlined Interface Design. By adopting ECS, we can pro-
vide a common design guideline that simplifies the definition of
interfaces. This guideline is established by clarifying what should
be assigned to each of the three core ECS elements: entities, com-
ponents, and systems. Furthermore, we provide a design principle
for how systems reference components, which makes the resulting
interfaces straightforward and self-evident.

4 Phalanx Simulator

4.1 Entity-Component Design

Phalanx has two groups of component arrays: one for the instruc-
tion pipeline and another for the memory subsystem. These groups
are updated every simulation cycle. Figure 2(b) and (c) illustrate the
design of entities and components in Phalanx.

For the instruction pipeline, each entity corresponds to a single
instruction, while components are defined at the granularity of the
data produced by each pipeline stage. The logic of every stage is im-
plemented as a system that computes the stage results. The system
also includes certain data that is not tied to any specific instruction
(e.g., branch target buffer).

For the memory subsystem, each entity corresponds to a series
of memory-level accesses to a specific address, while components
are defined at the granularity of the results produced as data re-
quests traverse the memory hierarchy. For intuition, we can think
of an entity as a single round-trip dataflow originating either at
the execution stage in the instruction pipeline or at any level of
the memory hierarchy. As with the instruction pipeline stages, the
behavior of every memory level is implemented as a system. Thus,
ECS can also model hardware other than the instruction pipeline.

Through the development of Phalanx, we found that treating
bundled information in dataflow as an entity improves design clar-
ity. Instructions and memory accesses are precise examples of bun-
dled information in dataflow. Each time bundled information flows,
either new data is added to it or some is removed from it. By ex-
ploiting this characteristic to design components based on what is
added or removed, a complex concept can be naturally represented
in ECS.

4.2 Design Principles

4.2.1 Maintaining a Single Source of Data. Processors determine
their behavior by leveraging information from multiple sources. If
this information is duplicated across sources, the copies may be-
come inconsistent. Although existing simulators prevent such in-
consistencies through encapsulation, it is incompatible with our
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design, which decouples data from behavior. Therefore, our design
requires a principle to prevent them.

To avoid this problem, we decided not to memoize data that can
be calculated from other data. Although memoizing calculation
results often speeds up the simulator, this principle takes prece-
dence. Despite this principle being in place, ECS can leverage mem-
ory access locality, easily achieving sufficient simulation speed.
Although Phalanx includes several computationally intensive yet
straightforward parts of code (e.g., linear searching for every sim-
ulated cycle) to follow the principle, its simulation speed remains
comparable to that of existing simulators.

4.2.2  Single Primary Update Function per Component. ECS makes
it difficult to identify which function updates a specific component.
Proper encapsulation ensures that only the methods of a class can
modify its fields. However, in ECS, functions are not tied to com-
ponents, and thus, it is unclear where the code that modifies a com-
ponent is located. Furthermore, when a component is modified in
multiple source locations, understanding the overall behavior re-
quires knowledge of the update order and all its actions.

To avoid this problem, a component should be generally modi-
fied by one function. However, exceptions include functions that
update data with widespread effects, such as pipeline flushes. Based
on our experience developing Phalanx, this principle does not pose
a significant obstacle.

4.2.3  Prioritizing Modifiability. Unlike existing simulators, Pha-
lanx is designed to be modified by directly rewriting its code. Many
existing simulators are designed as if they were libraries. In other
words, they are often implemented to accept callback functions or
to allow overrides through polymorphism, so that existing code
does not need to be modified. However, as mentioned earlier, when
implementing a new method that cannot be realized within the ex-
isting interfaces, it becomes necessary to modify the code directly.

Code modifications on the library can significantly burden re-
searchers. This is because modifying the code may violate invari-
ants that are implicitly assumed within the library. Consequently,
researchers making the modifications must investigate the invari-
ants that were originally guaranteed. Worse still, such invariants
are often undocumented, which further increases the burden on
the researchers.

We thus concluded that it is preferable to write the code from
the outset with the assumption that modifications will be made by
directly rewriting it. In other words, our simulator is designed so
that its modifiers (i.e., researchers) do not need to investigate data
invariants. This is achieved by ensuring that our simulator does
not conceal component data but instead makes all of it accessible,
and by maintaining a single source of data. Because our simula-
tor guarantees a single source of data, the researchers can freely
make changes without unnecessary investigation. Although this
requires the simulator provider to design it with greater care, our
priority is to reduce the burden on the researchers.

It should be noted that these constraints are not necessarily im-
posed on the researchers. Since researchers are fully aware of their
own modifications, they can ensure that the invariants remain un-
changed. Thus, if necessary, modifications that violate these con-
straints can also be made. This approach ensures the ease of modi-
fication.
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Entity
id=0 id=1 id=2 id=3 id=4 id=5
type [enemy al[enemy b][ @ ][ item x || door |[enemy b] "
Component [ position X=.. X=.. > X=.. X = .. X=..
array y=.. y=.. y=.. y=.. y=..
velocity VX = ... VX = ... & VX = ... & VX = ...
vy = .. vy = .. vy = .. vy = ..
health point| hp=.. |[hp=. ][ @ [ @ [ @ |[hp=..]
doorstate | @ @ ][ @ [ @ [ clsed ][ @ |
: ) : : : :
(a) Example design of entities and components for video games.
id=0 id=1 id=2 id=3 id=4 id=5
current stage [ rename |[schedule][ @ ][ fetch |[schedule][ decode | ---
fetched op info .PC = || PC=w [%} .PC - .PC T .PC T
ins=.. || Ins=.. ins = ... ins = ... ins = ...

. type = ... || type = ... type = ... || type = ...
decoded op info srcl =..||srcl = .. @ @ srcl =..||srcl = ..
renamed op info phys_ phys_ (%} %) phys_ @

srcl = ..||srcl = ... srcl = ...
readiness [ @ [ ready |[[ @ ][ @ Jlnotready][ @ |
(b) Example design of entities and components for instruction pipelines.
id=0 id=1 id=2 id=3 id=4 id=5
address [ 0x1000 |[ 0x1200 |[ @ ][ 0x2000 ][ 0x9000 ][ 0x2080 |
type [ read |[ read ][ @ || read || write |[prefetch]
timer= timer= ... timer= ... timer= ...
L1Dtagcheck | iy — | hit=... @ hit = . @ hit = ...
L1D miss status| @ ][ waiting |[[ @ |[returned || @ ][ waiting |
timer= ... timer= ...||timer= ...||timer= ...
L2 tag check @ hit = ... @ hit=... || hit=... || hit=..
L2 miss status ‘ %) H %] H (%] H returned ‘ ‘

@ ][ waiting | -+

(c) Example design of entities and components for memory subsystems.

Figure 2: Example design of video game entities and components, followed by processor simulator examples: an instruction
pipeline and a memory subsystem. Components that can be added to a single entity are arranged vertically, and components
of the same kind are arranged horizontally. (a) In the video game example, the entity with “id=3” is of type item_x and has
position and velocity components, but does not have a health point component. The entity with “id=2” is unused. In ECS,
each entity can have an arbitrary combination of components, making it straightforward to extend functionality through

composition.

4.3 Processor-Specific Logic

4.3.1 Intra-Cycle Sequential Logic. Existing processor simulators
model the simultaneous updating of clocked sequential logic in dif-
ferent ways. For example, ChampSim, gem5, and Sniper read and
update data in an appropriate order. Onikiri2, on the other hand,
creates a closure containing the read data and updates the data
later using that closure.

In contrast, Phalanx double-buffers component arrays, akin to
sc_signal in SystemC [9]. This yields deterministic results regard-
less of the order in which update functions are evaluated. More-
over, because the current and next component arrays are explic-
itly present in memory, it becomes easier to implement intra-cycle
sequential behavior.

4.3.2  Multi-Cycle Pipeline. Existing simulators use the following
strategies to implement stages that take multiple cycles.
o Calculate the absolute cycle to enter the next stage (Champ-
Sim, Sniper, gem5)
e Use a queue that can be inserted at any position (Onikiri2)
The strategy of calculating the absolute cycle to enter the next
stage is easy to understand, but its correctness is not necessarily
clear. This is because if events such as pipeline stalls occur in the fu-
ture, the cycle to enter the next stage will become incorrect. gem5
guarantees that every instruction can enter the next stage at the
calculated cycle by providing skid buffers. However, it is difficult
to model a configuration that does not use skid buffers.
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The strategy of using a queue that can be inserted at any posi-
tion is an advanced version of the previous strategy. The problem
mentioned above is solved by not retrieving from the queue during
cycles in which pipeline stalls occur. However, it remains difficult
to account for the effects of dynamic events other than pipeline
stalls. This problem is significant when implementing speculative
scheduling mechanisms.

In contrast, Phalanx takes a strategy of adding a component that
tracks information such as how many more cycles until completion
(timer). All we need to do is decrement this variable (--timer;)
in each cycle, and it is clear what is happening. In the event of a
pipeline stall, omitting --timer; clearly indicates that processing
has not progressed. Additionally, any other dynamic events can
be accommodated by updating the timer value to an appropriate
value after the event occurs, making the strategy highly flexible.

5 Evaluation
5.1 Methodology

By design, Phalanx includes sections of computationally intensive
code. We demonstrate that it remains fast and that the design does
not pose a practical problem.

The processor simulators used for comparison are ChampSim,
Onikiri2, and gem5. Except for ChampSim, which uses x86, all the
simulated processors use the RISC-V ISA. For reference, we also
measured the performance of RSD [8] compiled with Verilator [10].
RSD is a soft processor described in SystemVerilog, and Verilator
is a compiler from the synthesis subset of SystemVerilog to C++.

Table 1 summarizes the evaluation environment, and Table 2
lists the parameters of the simulated processor. The programs and
execution traces used in the evaluation differ across simulators;
therefore, the results should be regarded as indicative rather than
strictly comparable.

5.2 Results

Table 3 shows the results of the simulation speed evaluation. We
use 800 kHz to denote that the simulator can simulate 800000 cy-
cles in a wall-clock second. As a rough indicator of the complexity
of the simulated processor, the number of pipeline stages is also
shown.

Phalanx (a) is an implementation that does not double-buffer the
component arrays; thus, it does not copy them every cycle. Phalanx
(b) is a complete implementation that utilizes double-buffering. Both
implementations perform the same simulation. Phalanx (a) ran at
800 kHz, faster than other processor simulators. On the other hand,
Phalanx (b) ran at 710 kHz, which is comparable to other processor
simulators. A simulation of 10° (=1G) cycles can be completed in
approximately 23 minutes when the simulator runs at 710 kHz.

Figures 3-7 show the pipeline view diagrams of the simulated
processors. Phalanx and Onikiri2 model an out-of-order execution
engine that includes speculative scheduling. gem5 excels at full-
system simulation; however, its model of an out-of-order core is
comparatively coarse. ChampSim simulates the front-end pipeline
and cache behavior in detail. However, the out-of-order engine in
ChampSim employs many idealized mechanisms. The RSD proces-
sor is an actual hardware implementation rather than a simulator.
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Table 1: Evaluation environment, i.e., the host machine on
which the simulator program was run.

OS Ubuntu 24.04 LTS
CPU Ryzen 9 7950X
C++ Compiler g++13.4.0
SystemVerilog compiler verilator 4.108

Table 2: Configurations of the simulated processors.

Phalanx Onikiri2 gem5 ChampSim RSD

Entities 96 96"  N/A N/A N/A
Fetch width 2 2 2 2 2
Physical registers 128 128 128 N/A (c0) 128
Load-store queue 16 16 16" 16" 16
Scheduler 36 36 36 36 36
Issue latency 2 2 N/A (0) N/A (0) 2
Reorder buffer 64 64 64 64 64
Commit width 2 2 2 2 2
T: OpArrayCapacity.

#: 16 for MatrixScheduler and 20 for ReplayQueue.
«: Set both LQ size and SQ size to 16.

Table 3: Simulation speed comparison.

Speed Inst. pipeline stages
Phalanx (a) 8.0 x 102 kHz 10
gem5 7.6 X 102 kHz 6-7
Phalanx (b) 7.1 x 10? kHz 10
Onikiri2 3.0 X 10? kHz 9
ChampSim 1.9 x 10? kHz 9

RSD 8.4 x 10! kHz 12-14

Because of hardware constraints, RSD does not always issue in-
structions in a strict oldest-first order and thus exhibits behaviors
that conventional simulators typically idealize away.

6 Conclusion

We found that the instruction pipelines of existing processor sim-
ulators are not designed to be easily modified. In other words, ex-
isting simulators each take a different approach to implementing
them, and most were not designed with code modifiability in mind.

We adopted the Entity Component System (ECS) software ar-
chitecture pattern into the instruction pipeline and memory sub-
system design. We proposed principles on how to write code to
address potential issues that may arise when implementing using
ECS. Additionally, we proposed methods for implementing logic
specific to processor simulators.

We presented a cycle-accurate processor simulator called Pha-
lanx, designed based on ECS. We compared the execution speed
of Phalanx with that of other processor simulators. Although the
principles introduced in Phalanx enforce computationally inten-
sive code implementation, Phalanx operates at about the same sim-
ulation speed as other processor simulators.

We demonstrated that ECS is useful for pipeline timing simula-
tion. Although Phalanx is a CPU simulator, it could be extended to
simulate other pipeline processors. For example, it should be pos-
sible to create highly parallelized GPU simulators. Since it adopts
a double-buffering method, we expect that parallelization can be
introduced without difficulty.
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