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ABSTRACT

Generative Al is increasing the productivity of software and hard-
ware development across many application domains. In this work,
we utilize the power of Large Language Models (LLMs) to develop
a co-pilot agent for assisting gem5 users with automating design
space exploration. Computer architecture design space exploration
is complex and time-consuming, given that numerous parameter
settings and simulation statistics must be analyzed before improv-
ing the current design. The emergence of LLMs has significantly
accelerated the analysis of long-text data as well as smart decision-
making, two key functions in a successful design space exploration
task. In this project, we first build gem5 Co-Pilot, an Al agent assis-
tant for gem5, which comes with a webpage-GUI for smooth user
interaction, agent automation, and result summarization. We also
implemented a language for design space exploration, as well as a
Design Space Database (DSDB). With DSDB, gem5 Co-Pilot effec-
tively implements a Retrieval Augmented Generation system for
gemb5 design space exploration. We experiment on cost-constraint
optimization with four cost ranges and compare our results with
two baseline models. Results show that gem5 Co-Pilot can quickly
identify optimal parameters for specific design constraints based
on performance and cost, with limited user interaction.
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1 INTRODUCTION

Computer architecture design space exploration (DSE) is the process
of finding optimal parameters in a design space given a goal and
constraints. In this project, we define a design space by its goals,
parameters, and constraints, and DSE as the process (by human,
machine, or both) of identifying the best parameters for a goal
under constraints. Computer architecture DSE is simply this process
instantiated in architecture design.

A typical example of DSE is exploring the cache hierarchy de-
sign space of a CPU microarchitecture to maximize performance
under certain constraints (such as power and/or area) for a specific
workload (for example, a matrix—matrix multiplication kernel).

Traditional human-driven DSE is tedious: architects must explore
thousands of parameter values, run tens to hundreds of simulations,
and analyze large volumes of statistics to understand the effects
of different parameters. LLMs offer a way to accelerate this labor-
intensive process. With their long-context capabilities, LLMs can
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process simulation data and scripts, provide well-reasoned deci-
sions or suggestions, and, when paired with function-calling, act
as autonomous agents that invoke external tools for more effective
decision-making.

In this work, we present gem5 Co-Pilot, an LLM-powered assis-
tant for computer architecture DSE using gemb5 [4, 9]. To evaluate
gem5 Co-Pilot, we explore the design space of an L2 cache under
a total power constraint for a workload. Results show that gem5
Co-Pilot can reach near-optimal configurations within 1-8 genera-
tion stages (see Section 3.1.3) and 2-12 gem5 runs. Using GPT-40
via OpenAlI’s cloud API, each DSE session for a given constraint
costs less than $0.5.

2 BACKGROUND

Computer architecture Design Space Exploration (DSE) aims to
identify optimal design configurations under constraints such as
performance, power, area, and cost. The vast and complex nature of
the design space makes exhaustive evaluation impractical, driving
the need for efficient and scalable exploration strategies.

Traditional DSE methods include brute-force search, parameter
sweeps, and heuristic algorithms. Brute-force guarantees optimality
but does not scale with problem size [19]. Heuristics such as simu-
lated annealing and particle swarm optimization [5] focus search on
promising regions, though they may converge to local optima and
often require careful hyperparameter tuning. Grid search covers
the parameter space systematically but suffers from exponential
growth [7]. Architectural DSE often relies on slow cycle-accurate
simulators like gem5, which further limits the practicality of these
approaches. Domain-specific tools such as BOOM-Explorer [1] im-
prove coverage but remain constrained by simulator overhead.

Machine learning offers more scalable alternatives by replacing
simulations with predictive models. Techniques such as reinforce-
ment learning (RL) [8], genetic algorithms [2], ant colony optimiza-
tion [10], and Bayesian optimization (BO) [3] have been successfully
applied. RL formulates DSE as a sequential decision process, adapt-
ing efficiently across workloads. Evolutionary and swarm intelli-
gence methods enable efficient global exploration, while BO uses
probabilistic surrogates for sample-efficient optimization. Frame-
works like ArchGym [22] integrate multiple ML agents for trade-off
optimization, and tools such as ZigZag [12] employ analytical mod-
eling to avoid slow simulations for DNN accelerators. More recently,
Pareto-driven active learning [21] combines active learning with
Pareto optimality to accelerate multi-objective DSE.

Despite these advances, ML-based DSE still faces challenges, in-
cluding high training cost, low volumes of training data, limited
generalization, and interpretability issues. Real-world applications
require not only efficiency but also explainability. The emergence of
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Figure 1: DSE system overview

generative large language models (LLMs) offers a promising direc-
tion for incorporating pre-trained reasoning into DSE workflows.
Future efforts will likely focus on hybrid strategies (combining RL,
BO, and heuristics) while incorporating additional constraints such
as power, thermal, and security into the optimization process.

3 SYSTEM DESIGN

Our DSE system comprises three core components: a DSE Al agent,
the gem5 simulator (or DSDB, see Section 3.3), and a Streamlit-
based user interface (UI), as illustrated in Figure 1. The architecture
separates the agent, simulation unit, and UI to improve flexibility
and extensibility. The DSE agent, built around an LLM-driven state
machine, dispatches gem5 configuration parameters to the simu-
lator and relays contextual data (e.g., chat history) and simulation
logs to the UL The gem5 simulator (or DSDB) returns simulation
results to the agent for optimization. The Streamlit Ul retrieves
design points from the DSDB for visualization and manages system
configuration and user inputs for the agent.

As depicted in Figure 2, the Al agent acts as the central controller.
A system prompt defines high-level goals, including DSE rules and
permitted states, to steer the LLM’s operation. This prompt, com-
bined with chat history, provides context for each LLM invocation.
A state machine with four states (ANA, GEN, QA, and EXIT), coupled
with a prompt bank (see Section 3.1.3), enables the LLM to behave
correspondingly across different functions , balancing flexibility
with control.

The simulation backend evaluates system performance using
gemb5. The current incarnation of gem5 Co-Pilot supports gem5
simulations in System Call Emulation (SE) mode. Configuration pa-
rameters are converted into gem5 execution commands, and results,
including performance statistics, power, and area, are returned to
the agent. To minimize simulation overhead, the DSDB supplies
precomputed results, significantly speeding up exploration.

A Streamlit-based web UI [16] supports system setup, simulation
control, and visualization. Its interactive features (such as dynamic
plotting and public URL access) facilitate remote use and enhance
overall accessibility.

3.1 DSE Al agent

The AI agent powers the system, executes the explorations, and
analyzes the history parameters and stats. It handles the most com-
plex task of DSE and utilizes the full power of LLMs. However, the
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Figure 2: DSE agent Structure

LLM itself could hallucinate and generate inaccurate output. To
solve these potential problems, we applied several techniques to
our Al agent.

3.1.1  Automation mode switching. We provide a mode selection
button that allows the user to choose between automation and
manual modes at any time. In this way, the user can decide whether
to let the agent run autonomously or to interact with it for a more
customized DSE experience. By default, the agent operates in man-
ual mode, under which an input box is displayed. Upon switching
to automation mode, the input box is hidden, and the agent begins
running automatically using preset prompts. If the user switches
back to manual mode, the agent will wait for the current automation
process to complete before displaying the input box again.

The automation prompts are listed in Table 1. It should be noted
that the prompt in the ANA state is executed at the end of that state
to transition to the GEN state, as is the case for other automation
prompts. We use automation mode for all experiments to elimi-
nate human influence on the results, while keeping manual mode
available for interactive exploration.

Table 1: Prompts for automation mode

State Prompts

ANA  Based on the analysis, generate a new parameters
batch for the mission.

GEN  Analyze all the simulation results so far (if we have
them) and provide insights that would help better
design.

QA I have no more questions. Please go to ANA state.

EXIT  Provide the final parameters batch (the best one) (of
size 1) for the mission and exit the program.

3.1.2  Concurrent simulations. Multiple threads can be used to
speed up DSE by running multiple gem5 commands concurrently.
gem5 Co-Pilot is built to suit this feature. We design the agent
to be able to generate multiple configurations and get their sim-
ulation results in each GEN state (see Section 3.1.3). We define
parameters_set as a set of parameters that can be used for a
simulation. We define parameters_batch, or batch, as all the
parameters_set that the agent generated in a GEN state. The num-
ber of parameters_set in a parameters_batch is called the batch
size. Accordingly, we define a results_batch as all the concurrent
results that the simulator returns in a GEN state. gem5 Co-Pilot
allows up to 20 concurrent simulations.
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3.1.3 State machine. A state machine structures the LLM’s task
execution through a clear, state-driven process. Each state corre-
sponds to one response and is bound to a structured output. The
system prompt specifies the initial state, all possible states, and the
transitions between them. The LLM’s role in each state is provided
in Table 2.

Table 2: Agent States and Their Responsibilities

State Description
ANA - Retrospect past simulation results from chat history.
- Provide CoT-based step-wise analysis and conclusions.
- Explain reasoning and suggest next state (ANA or GEN).
GEN - Generate a parameters_batch based on analysis.
- Each parameters_set respects design space ranges.
- Batch size fits concurrent simulation limit.
- Suggest next state (ANA or GEN).
QA - Answer user’s questions using history and known context.
- Transition back to ANA after answering.
EXIT - Output final best parameters_batch (of size 1).

- Triggered when no further improvement is expected.

3.1.4 LLM structured output. A major challenge in using LLMs
for parameter generation is their occasional failure to adhere to
required formats or content (even with explicit prompting) as ob-
served in earlier models like GPT-3. This is particularly problematic
for DSE, which demands interpretable and highly stable parameter
outputs. Additionally, the system must output the next state and
the LLM’s reasoning behind its parameter choices.

Modern LLMs such as GPT-4 and GPT-40 address this issue
through structured output [14], which enables the model’s response
to be directly parsed into a Python dictionary. This approach not
only ensures consistent and interpretable responses but also reduces
output length, thereby lowering generation costs.

3.1.5 Results Retrospection. Results retrospection (RR) is a tech-
nique used in our LLM prompting: in every ANA state, instead of
directly asking the agent to provide an analysis on history results,
which were stored in history chat, we add a "retrospection” prompt:

"You should first retrospect on all history simulation
results. They are in the chat history, you should read
them and print them in batches in a timely manner."

to let the LLM retrospect on historical results before providing the
analysis to prevent LLM from forgetting historical information as
the chat length gets longer.

3.1.6  Baseline Preservation. Baseline Preservation (BP) means that
in every GEN state, instead of asking the LLM to directly generate a
batch without any order, an additional prompt:

"When the number of concurrent simulations is larger
than 1, you should make the first parameters_set the
best one you can figure out, and use other ones for
exploration.’

who asks the Al to preserve the possible best parameters_set in
the first thread while keeping other threads for wild exploring is
applied to prevent chaos in the DSE process.
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Figure 3: Streamlit UI

3.1.7  Chain of Thought Reasoning. A major challenge in employ-
ing LLMs for design space exploration (DSE) is ensuring logically
sound and accurate outputs. Chain of Thought (CoT) prompting [18]
addresses this by guiding the model to reason step-by-step, improv-
ing deliberation over one-shot responses.

In DSE, CoT enables the LLM to systematically evaluate trade-
offs. For example, it can reason that increasing L2 cache size typi-
cally raises area and power costs, and should be avoided if perfor-
mance gains are marginal. Such structured reasoning is essential for
making informed parameter selections within constrained design
spaces.

3.1.8 Streamlit User-Interface. We use a popular framework used
by today’s web-based Al Applications, Streamlit [16], to build our
UL, as shown in Figure 3. It is powerful for displaying chat-bots,
DataFrames, dynamic 2D and 3D graphs, curve line analysis, and
so on. It is suitable for our DSE setup, interaction, analysis, and
result display.

3.2 The gem5 Simulator

The gem5 simulator is a modular, open-source framework widely
used for computer architecture DSE. It provides a flexible tool for
simulating CPUs, memory hierarchies, interconnects, and devices.

In our framework, gem5 executes binaries under various con-
figurations generated by the Al agent, producing detailed runtime
statistics and performance counters. These outputs are passed to
MCcPAT [6] for joint power and area estimation, enabling compre-
hensive design point characterization within constrained optimiza-
tion objectives.

3.3 DSDB: A Design Space Database for gem5

To keep track of the design space exploration, gem5 Co-Pilot in-
troduces a Design Space Database (DSDB), which is a structured
repository of comprehensive simulation results from previously
executed runs. The first important use case of DSDB is to estab-
lish baseline Pareto-optimal frontiers for DSE. gem5 Co-Pilot also
leverages the DSDB to estimate the performance of a future sim-
ulated system without executing a full simulation, significantly
accelerating the DSE process.

In our evaluation, the DSDB provides precomputed Pareto fron-
tiers for benchmarking, enabling objective assessment of gem5
Co-Pilot ’s optimization performance. It also accelerates the gem5
Co-Pilot loop by retrieving prior results, substantially reducing
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exploration time and promoting convergence. Although results are
fetched from pre-run simulations, each entry corresponds to an
actual simulation, ensuring rigor while maintaining efficiency. The
simulations populating the DSDB were conducted on a SLURM-
managed cluster, as specified in Table 3.

4 METHODOLOGY

Table 3: Simulation Environment Configuration

Field Specification

CPU Model Intel Xeon E5-2660 @ 2.20 GHz (per
node)

Cores per Job 1 core per SLURM task

Memory per Job 4 GiB DRAM

Operating System Rocky Linux 9.4

Execution Model  Cluster-parallel: one simulation per

SLURM job

4.1 L2 Cache Design Space Specification

Table 4 defines the large L2 cache design space used in all subse-
quent experiments. This space spans five key microarchitectural
parameters: cache size, associativity, number of MSHRs, MSHR
target count, and replacement policy. Each parameter is assigned
a broad and representative range of values, capturing realistic de-
sign options found in modern systems. When all combinations are
enumerated, the design space contains over 7,770 unique configu-
rations, enabling thorough exploration of architectural trade-offs
across performance, power, and area.

Table 4: L2 Cache Design Space (Large)

Parameter Values

12_size 128KiB, 256KiB, 512KiB, 1MiB, 2MiB

12_assoc 2,4,8,16, 32

12_mshrs 16, 32, 64

12_mshr_tgts 6,8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30, 32

LRURP, RandomRP, FIFO, FIFORP,
LFURP, BIPRP, MRURP, BRRIPRP,
SecondChanceRP

12_policy

4.2 DSE Goal and Metrics

Architectural design is all about trade-offs. We set our system goal
to a function of performance and cost GOAL = f(PERF, COST).
The performance and cost are two entangled variables which in a
DSE problem architects must take into consideration. In our study,
we set our GOAL to be finding the design point that achieves the
highest performance in a given cost range. We call this point the
performance-under-constraint point (PconstraintP) and find that it
is both DSE-representative and LLM-friendly, due to the concept
being easily understood by the model. There may be more than one
PconstraintP in a given cost range and we regard them all as valid
and reasonable goals.
To evaluate the effectiveness of gem5 Co-Pilot, we use 12_hit_rate

as the performance (PERF) metric. The 12_hit_rate is provided by
gemb stats and is calculated in Equation 1.
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PERFhit_rate =1 - Rumiss (1)

Rumiss = stats.12cache.overallMissRate.total

We choose total_power as our COST. It is provided by the McPAT
power modeling tool and calculated in Equation 2.

COSTtotal_power = den + Pgate + Pgub 2

den =mcpat.total_12s.runtime_dynamic
Pgate = mcpat. total_12s.gate_leakage
Py, = mepat.total_12s.subthreshold_leakage

We use (perf_ratio, nsims) pairs as the metric for our goal.
We define perf_ratio as the proportion of a DSE agent generated
PERF result value to the PERF value of P¢constraintP in a given range
of COST. To be more specific, when we do DSE within COST range
[0,0.15] , if the DSE agent finally finds a potential best design point
that achieves a PERF value of Ppgg, while the ground truth best
PERF value of PconstraintP 1S PregntraintP> then:

P
perf_ratiolo,o_lsj = DSE

PPConstraintP
In our experiment, a perf_ratio higher than 97% is regarded as a
realistic design point.

nsims is the number of simulations the agent applies before a
DSE achieves its final result. The number of GEN stages used is also
recorded as it measures the speed of convergence. The relationship
between the number of GEN stages and nsims can be shown as:

nsims = nGENs X concurrent_sims_per_GEN

Overall, the (perf_ratio, nsims) pairs measure a system’s
ability to achieve a good result while considering the simulation
cost.

4.3 Experiment Design

We evaluate our approach using a series of cost ranges: [0,0.12],
[0,0.15], [0,0.2], [0,0.4], which represent distinct regions
of the cost-performance Pareto front. For each range, we conduct
DSE using both baseline methods and gem5 Co-Pilot, recording the
achieved perf_ratio and number of simulations (nsims).

We compare against two baseline methods: Random Search (RS)
and a Genetic Algorithm (GEN) [11]. For RS, we report the first
configuration achieving perf_ratio >97% and its simulation cost.
The GEN implementation uses a population of 50 over 20 gen-
erations, with 80% crossover and 20% mutation rates, employing
tournament selection and elitism. All candidates undergo dynamic
validity checks against the PconstraintP objective.

We further examine the impact of concurrent simulation count
and key prompt strategies (Results Retrospection-RR and Baseline
Preservation-BP). Each configuration was run three times, with the
best result selected to account for LLM randomness.

A small number of runs failed due to rare LLM output irregulari-
ties (e.g., malformed Python dictionaries). These were automatically
detected and corrected by requesting a renewed response, ensuring
continuous operation.

All simulations use the gem5 System Call Emulator (SE) mode.
The baseline configuration (Table 5) features an O3 CPU, two-level
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caches, and DDR3 memory, with several L2 parameters available
for DSE tuning.

The evaluation workload is a blocked matrix multiplication (128x128

matrices, block size 32) in C. With a footprint of ~393 KB (exceeding
L2 capacity), it stresses the memory hierarchy while maintaining
short runtimes.

Experiments were conducted on both a SLURM cluster and a high-
end workstation (Intel i9-13900HX, 64GB RAM). The full design
space (7,770 configurations) completes in ~6 hours on the cluster.
On the workstation, a single simulation takes ~1 minute, and a full
DSE (20 generations) finishes in ~30 minutes.

The OpenAlI API cost for a full automated DSE run remains below
$0.50 USD, compared to over $8 for even a brief manual DSE (10-
minute) under a $50 per hour labor cost , demonstrating significant
cost efficiency.

Table 5: Baseline gem5 System Configuration

Component Configuration
ISA X386

CPU model 03 (out-of-order)
Clock frequency 1 GHz

Memory mode Timing

Main memory size 512 MiB

L1 I-cache 16 KiB, 2-way, latency: 2 cy-
cles

L1 D-cache 64 KiB, 2-way, latency: 2 cy-
cles

L2 cache 256 KiB, 8-way, latency: 20
cycles (DSE tunable)

L2 MSHRs / Targets per MSHR 20 / 12 (DSE tuneable)

L2 Replacement policy LRU (DSE tuneable)

System buses L2XBar and SystemXBar

Memory type DDR3_1600_8x8

5 RESULTS

5.1 Performance-Cost Optimization

Our experimental evaluation demonstrates the effectiveness of
gem5 Co-Pilot in navigating the architectural design space com-
pared to traditional approaches. The results highlight both the
efficiency and optimization capabilities of gem5 Co-Pilot across
different cost constraints.

Figure 4 presents the Pareto-optimal frontier for the full design
space with Co-Pilot’s selected design points overlaid at 3 and 4 con-
current simulations. These configurations demonstrate gem5 Co-
Pilot’s ability to effectively navigate the performance-cost trade-off
space while utilizing different levels of parallel simulation resources.
The selected points cluster near the Pareto frontier across all cost
ranges, indicating effective optimization under varying constraint
levels.

Note that we evaluated all possible design points to obtain a
complete view of the design space and then applied the skyline
algorithm to determine the ground-truth Pareto frontier. We subse-
quently used gem5 Co-Pilot to generate the optimal design point
within a given cost range and observed that the generated points
lie on the frontier. We perform this exhaustive evaluation in our
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paper to demonstrate that gem5 Co-Pilot can indeed identify opti-
mal design points. In practice, however, users do not need to repeat
this process, as our results have already validated gem5 Co-Pilot ’s
ability to discover frontier points effectively.

Table 6: Performance-Cost Optimization Results (Performance ratio
and simulation utilization)

Model Cost Range (W)

[0,0.12] [0,0.15] [0,0.2] [0,0.4]
RS 0.978 (25)  0.986 (11)  0.980(22)  0.997 (6)
GEN  1.000(133) 1.000 (158) 1.000 (137) 1.000 (127)

C-P-1 0.980 (6><1) 0.987 (5><1) 0.989 (8>< 1) 0.999 (2><1)
C-P-2  0.978 (5><2) 0.992 (6><2) 0.989 (6><2) 0.998 (1><2)
C-P-3  0.974 (4><3) 0.987 (3><3) 0.980 (3><3) 1.000 (l><3)
C-P-4  0.987 (2><4) 0.986 (3><4) 0.973 (l><4) 1.000 (l><4)
Note: Values show perf_ratio achievement (higher is better) and required
simulations (nsims = nGENs X concurrent_sims_per_GEN, in parentheses). RS

= Random Search baseline; GEN = Genetic Algorithm baseline, C-P-i = Co-Pilot with i
concurrent simulations (1-4). All Co-Pilot variants use the DSDB framework.

Table 6 compares the performance ratios and simulation counts
across different methods and cost ranges. The Genetic Algorithm
(GEN) achieves perfect optimization (1.0) but requires substantially
more simulations (127-158). Random Search (RS) attains high per-
formance (0.978-0.997) with moderate simulation counts (6-25),
though with greater variability.

Co-Pilot demonstrates superior efficiency, achieving near-optimal
performance (0.973-1.000) with significantly fewer simulations (as
low as 1-8). Key observations include:

e Rapid Convergence: Co-Pilot reaches >97% of optimal
within 1-8 simulations, vastly outperforming RS (11-25)
and GEN (127-158). For example, in the tight [0,0.12] range,
C-P-4 attains 98.7% with only 2 simulations.

e Scaling with Concurrency: Higher concurrency (e.g., C-
P-3, C-P-4) proves that gem5 Co-Pilot performs well under
different concurrences and total simulation count decreases
consistently as concurrency increases, especially under cost
range [0,0.12], [0,0.15], and [0,0.02].

e Constraint Sensitivity: All methods perform best in the
widest cost range [0,0.4], where Co-Pilot achieves nearly
perfect results in just 1-2 simulations.

5.2 Ablation Study

We conduct an ablation study to quantify the contribution of in-
dividual components in gem5 Co-Pilot, focusing on key prompt
engineering elements and their impact on design space exploration.

Two critical prompt components are evaluated through removal
experiments, where each is systematically omitted and the resulting
system is compared against the full configuration:

e Results Retrospection (RR): Removes the result retrospec-
tion (see Section 3.1.5) in the ANA state. The agent does not
review historical simulation results.

e Baseline Preservation (BP): Removes baseline preservation
(see Section 3.1.6) in the GEN state. The agent does not retain
the best-performing parameters_set in the initial thread.

Table 7 summarizes the performance impact of ablating key
prompt components across cost ranges. Results show that Results
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Copilot Generated Configurations, when nsims=4
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Figure 4: Co-Pilot generated points (yellow) when optimizing total power vs. hit rate, superimposed on the full Pareto frontier (black) under 3
and 4 concurrent simulations. The Pareto frontier is extracted from the DSDB dataset. The cost thresholds—[0, 0.12], [0, 0.15], [0, 0.2], and
[0, 0.4]—represent different ascending stages along the frontier. The experiment system uses an O3 CPU with 2-level caches running a blocked

matrix multiplication benchmark (see Section 4.3).

Table 7: Ablation Study Results (perf_ratio degradation) under Co-

Pilot 3-sim
Ablation Cost Range (mW)
[0,0.12] [0,0.15] [0,02]  [0,0.4]
Full System 0.974 (3)  0.987(3) 0.980 (3) 1.000 (1)
No RR 0.000 (c0)  0.970 (1) 0.944 (4) 1.000 (1)
No BP 0.974 (6) 0.987(8) 0.959 (8) 1.000 (2)

NoRR+NoBP 0.974 (13) 0.972(3) 0.942(5) 1.000 (1)

Note: Values represent (perf_ratio achieved / GEN count). Simulation per GEN is fixed
at 3. RR = Results Retrospection (historical simulation analysis), BP = Baseline
Preservation strategy. "co" indicates failure to converge within 20 simulation cycles.
All experiments use the same initial seed configuration. The [0,0.12] range shows
highest sensitivity to component ablation.

Retrospection (RR) is critical under tight constraints: removing RR
alone in the [0,0.12] mW range causes complete failure (perf_ratio
= 0), while also degrading performance in [0,0.15] and [0,0.2] ranges.
Baseline Preservation (BP) mainly improves efficiency—without
BP, the number of generations increases by 100-167% across most
ranges, though final perf_ratio remains high (>97.4% in three
ranges). Their interaction is complementary: BP partially compen-
sates for RR’s absence in strict constraints, maintaining perfor-
mance at the cost of more simulations. In relaxed constraints ([0,0.4]
mW), both components become unnecessary, as all configurations
achieve perf_ratio = 1.0 within 1-2 simulations.

6 RELATED WORK

Recent studies have explored using large language models (LLMs) in
hardware design and design space exploration (DSE). For high-level
synthesis (HLS), LLM-DSE [17] proposed a multi-agent system that
optimizes compiler directives through specialized roles. Although
effective, such approaches remain at a high abstraction level and
depend heavily on synthesis feedback from tools like Merlin and
Vitis.

Other works, such as CodeChain [20], generate Verilog or HLS
code from natural language prompts. These typically perform one-
time synthesis with minimal iteration and often omit integration
with performance or power evaluation.

In comparison, our work targets cycle-accurate architectural
exploration. The gem5 Co-Pilot embeds LLM reasoning within a
state-managed exploration loop that directly manipulates hardware
parameters. Each design is assessed using gem5 for performance
and McPAT for power and area, creating a closed-loop refinement
process based on simulation feedback. Unlike scripted methods [15],
Co-Pilot employs natural language planning to interpret trade-offs
and navigate the design space efficiently.

This approach aligns with the agentic, cross-layer vision of Ar-
chitecture 2.0 [13], where Al agents use system feedback to guide
optimization. Co-Pilot implements this through declarative design
specification, intelligent control, and cycle-level evaluation, bridg-
ing high-level intent and low-level implementation in architectural
DSE.

7 CONCLUSION

In this work, we introduced gem5 Co-Pilot, a generative Al-powered
assistant for architectural design space exploration using gem5. We
evaluated gem5 Co-Pilot with a simple yet tractable example of de-
sign space exploration for efficient cache design and demonstrated
its effectiveness. gem5 Co-Pilot can significantly reduce the time
required to explore the design space of future hardware architec-
tures by intelligently navigating different configurations—avoiding
unnecessary simulations whose results can either be predicted (by
maintaining a design space database) or ruled out through rea-
soning. The design of gem5 Co-Pilot is modular, making it both
extensible and flexible for future use not only with gem5 but also
with other architectural tools.
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