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Abstract
General-Purpose Graphics Processing Units (GPUs) are essential ac-
celerators in data-parallel applications, including machine learning,
and physical simulations. Although GPUs utilize fast wavefront
context switching to hide memory access latency, memory con-
tinues to be a significant bottleneck, limiting overall performance
for many important workloads. Current GPU hardware enhance-
ments focus on issuing memory requests in advance to help solve
the memory bandwidth bottleneck and improve GPU performance.
However, this approach can still be inefficient, leading to hardware
contention and suboptimal resource utilization.

Instead of issuing memory requests in advance, we take an alter-
native view on improving GPU performance: lazily issuing memory
requests to eliminate memory requests where either (a) the fetched
values are zero or (b) they do not affect the result of the execut-
ing workload. Building on these insights, we propose LazyGPU,
which integrates lazy execution cores with a Zero Cache to elimi-
nate memory requests when all data required by a wavefront is zero.
Moreover, LazyGPU utilizes instructions, including multiplication
and multiply-add, to eliminate memory requests whose fetched val-
ues do not affect the outcomes of these instructions. For example,
LazyGPU achieves a 2.18× speedup compared with the baseline at
60% weight sparsity for the inference of LLaMA 7B.
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1 introduction
General-Purpose Graphics Processing Units (GPUs) are used in a
broad spectrum of applications, including machine learning [1, 14,
60], physical simulation [21, 39], autonomous driving [44, 83], and
financial technology [18, 30]. However, as computing capabilities
have increased significantly in recent years, memory bandwidth
has not kept pace. Choked by the memory wall, it is challenging
to fully utilize GPUs’ computing capability [28]. Prior works have
attempted to alleviate the memory bottleneck by improving the
instruction execution logic, mainly using two sets of approaches,
including eager execution [17] and lazy execution [8].

Eager execution. Eager execution fetches data from memory
as early as possible so that the data-consuming instructions do
not need to wait for the data, reducing stalls and improving Arith-
metic Logic Unit (ALU) utilization. For example, prefetching mach-
anisms [38, 42, 54] have been proposed to prevent long-latency
memory accesses from blocking compute. The newest NVIDIA
GPU chips with the Hopper architecture introduce Tensor Memory
Accelerator (TMA) [17] and Asynchronous Transaction Barrier can
issue memory requests from an independent group of threads or a
hardware component so that the memory-fetching threads or hard-
ware component can progress ahead of the computing threads. All
these methodologies target issuing instructions as early as possible
to increase hardware utilization.

However, eager execution does not always result in performance
improvements, as it can introduce unnecessary memory requests
or increase competition and congestion in the main memory sys-
tem [11, 56]. Moreover, we find that eager execution misses oppor-
tunities to remove dead memory accesses, which have no effect
on the program’s outcome. Memory requests are usually eagerly
issued to the memory system before eager execution cores realize
that they are useless. Therefore, implementing mechanisms to can-
cel these issued memory requests is inefficient on eager execution
cores.

Lazy execution. Lazy execution aims to address the limitations
of eager execution by issuing memory requests only when needed.
Prior works [8] have explored lazy execution in CPU architectures.
However, the trade-off between the overhead and advantages of lazy
execution on CPUs is critical as it introduces additional memory ac-
cess delay. In contrast, our observation reveals that lazy execution is
particularly suitable for GPUs. Unlike CPUs, GPU architectures are
highly sensitive to memory bandwidth, and thread-level parallelism
(TLP) on GPUs can mitigate the overhead of lazily issuing memory

https://orcid.org/0000-0001-9240-5926
https://orcid.org/0009-0004-7730-3437
https://orcid.org/0000-0003-3532-6521
https://orcid.org/0000-0001-8742-134X
https://doi.org/10.1145/3695053.3731009
https://doi.org/10.1145/3695053.3731009
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3695053.3731009


ISCA ’25, June 21–25, 2025, Tokyo, Japan Liu et al.

requests, effectively hiding the long memory latency by leverag-
ing a large number of threads. When one wavefront (also known
as a warp on NVIDIA GPUs) encounters data to be fetched from
memory, GPUs promptly schedule another wavefront to continue
execution.

To investigate the effect of lazy execution, we first design the
LazyCore, which executes load instructions by recording the trans-
action information and only issues the memory request when the
data is needed by other instructions. The results show that Lazy-
Core outperforms the baseline by up to 1.67× (1.08× on average)
for benchmarks evaluated. These results demonstrate that Lazy-
Core outperforms the baseline as it issues memory requests only
when needed, thus reordering them and optimizing memory access
sequencing.

To further exploit lazy execution, we propose LazyCore+①, where
① represents the optimization that eliminates memory requests,
effectively reducing memory transactions when all data required by
a wavefront is zero. Prior works [29, 59, 88] highlight that applica-
tions, especially deep learning workloads, load and store up to 90%
of zero values [34]. While sparse tensor cores [16, 53, 82, 91] exploit
zeros on GPUs, their reliance on specific sparsity patterns (e.g., 2:4
or 4:8) limits their sparsity rate and applicability across diverse
workloads. Instead, LazyCore+① lazily issues memory requests,
providing ample time to verify whether the data being fetched is
zero. To accelerate this process, we introduce a specialized cache
to store masks [26, 36], which indicates whether a value should be
fetched. Unlike prior approaches that depend on rollback mecha-
nisms [62], our lazy execution model allows verification to occur
naturally between address calculation and data usage, avoiding un-
necessary complexity. By eliminating redundant memory requests
when awavefront requires only zero values, LazyGPU reducesmem-
ory bandwidth consumption and congestion, ultimately improving
efficiency.

Moreover, we propose LazyGPU (LazyCore+①②), where the op-
timization ② represents the elimination of dead memory requests
whose values have no effect on the outcome of subsequent instruc-
tions. We define these types of instructions as ⊗ instructions as
their result is unaffected by the value of one operand if its cor-
responding operand is zero, such as multiply, multiply-add, and
and instructions. Load requests, whose destination register is sub-
sequently processed by the ⊗ instructions are considered dead if
the corresponding input register in the ⊗ instructions contains
zero value. In this work, our proposed LazyGPU consists of the
LazyCore with the additional optimization ① and ②.

We make the following contributions:
• We propose LazyCore, a new GPU architecture design to imple-
ment lazy execution of memory instructions. LazyCore addresses
the challenge of bandwidth contention caused by a large number
of memory requests by deferring issuing memory requests until
they are needed. Our investigation illustrates that LazyCore out-
performs the baseline by up to 1.67× (1.08× on average) across a
wide range of GPU workloads. Exploring the use of lazy cores on
GPUs is an underexplored design scheme. The purpose of lazy
cores is to inspire future GPU architecture design.

• Next, we present LazyCore+①, which utilizes information only
available in the core to eliminate memory requests whose fetched

values required by wavefronts are all zero. Additionally, Lazy-
Core+① can eliminate memory requests even when fetched data
contains non-zero values, as long as those values are not needed.

• Furthermore, LazyGPU further eliminatesmemory requests whose
value have no effect on subsequent instructions (optimization
②). Optimization ② achieves an additional memory request re-
duction by combining ⊗ instructions (e.g., multiplication) with
zero values. Specifically, our results show that LazyGPU reduces
memory requests by 31.1% for the inference and 31.4% for the
training over the baseline of ResNet-18 with 50% weight sparsity.

• We evaluate LazyGPU on ResNet-18, demonstrating performance
improvements of 1.20× for inference and 1.16× for training with-
out pruning. When the weight sparsity is increased to 50%, our
work achieves 1.31× for inference and 1.24× for training. Ad-
ditionally, LazyGPU achieves a 2.18× speedup compared with
the baseline at 60% weight sparsity for the inference of LLaMA
7B. Moreover, we also evaluate LazyGPU across a wide range of
applications. The results show that LazyGPU outperforms the
baseline hardware, achieving an average speedup of 1.08× (up to
1.67×) for benchmarks with default inputs and 1.28× on average
(up to 3.66×) for benchmarks with 50% sparsity. The hardware
overhead of LazyGPU amounts to only 0.009% of the total die
area compared to the baseline GPU.

2 background
Eager execution architectures. The primary function of eager
execution architectures is to promptly issue and commit instruc-
tions, aiming to improve hardware performance by increasing hard-
ware utilization. Prior architecture directions encompass various
key areas, including speculative execution [24, 50], branch predic-
tion [65, 69], value prediction [63, 64, 67], and prefetching [38, 42].
For example, Lee et. al. [42] propose an adaptive prefetch throt-
tling scheme to prefetch data for future access on GPUs. Each of
these methodologies aims to make execution architecture more
eager by issuing or committing instructions earlier. Moreover, the
rollback mechanism associated with eager execution architectures,
including speculative execution and branch prediction, introduces
significant resource overheads and, in addition, can incur large spec-
ulation penalties. Alternatives are needed to improve performance
in an energy-efficient way.

Lazy execution architectures. In contrast, lazy execution archi-
tectures execute instructions only when needed, aiming to optimize
instructions and eliminate dead instructions. Lazy Superscalar is a
representative lazy execution architecture work, which proposes
fusing instructions to improve CPU performance and leveraging a
large look-ahead distance provided by lazy execution [8]. Addition-
ally, Alsop et. al. [3] introduce lazy release consistency to achieve
more efficient coherence on GPUs. However, lazy execution archi-
tectures introduce additional delay as instructions are executed
only when needed. Different from prior works, LazyGPU focuses
on alleviating memory contention by reordering and eliminating
unnecessary memory requests on GPUs.

GPU architecture. GPU architectures are well-suited for work-
loads with the same program but different data. Typically, GPUs
execute hundreds to thousands of threads simultaneously to pro-
cess the workload, organized in a hierarchy structure. For example,
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NVIDIA A100 GPUs feature 108 streaming multiprocessors (SMs),
with each SM containing 64 CUDA cores to process warps. AMD
R9 Nano GPUs [4] contain 64 compute units (CUs), each equipped
with 4 SIMD units. Each CU can support up to 40 active wavefronts
(a 64-thread group), allowing for a theoretical maximum of 2560
concurrent wavefronts across the entire GPU. A wavefront is the
basic execution unit on SIMD units (GPU cores) and the instruc-
tion executed for all threads within a wavefront is always the same.
GPUs can hide long-latency memory requests by scheduling among
wavefronts. GPUs maintain large register files and the context of
wavefronts is stored in these registers, allowing them to be quickly
scheduled into execution units. Most importantly, all modern GPUs
follow an eager execution methodology. In the rest of this work,
we will aim to demonstrate that current GPU architectures could
be improved through the use of lazy processing techniques.

Zero-value related optimization. The zero values exist across
various applications, particularly in neural network tasks. Specifi-
cally, pruning techniques that prune parameters in neural networks
to zero values are widely studied [32, 72, 89]. Prior works [26, 27,
36, 57, 76, 84] explored the optimization on zero values in domains
including algorithms, compilers, and hardware designs. Further-
more, existing works [26, 36] have explored utilizing zero caches
to reduce memory access latency for zero values in CPU architec-
tures. Zero caches track zero values compactly and are designed
for fast responses. To minimize access latency, they are typically
small. Each bit in the zero cache indicates if a data block consists of
all zeros, increasing cache capacity and effective bandwidth when
the zero-value rate is high [26, 36]. These methodologies typically
issue memory requests for data and their zero masks concurrently
to avoid long memory access latencies. However, directly applying
these methodologies to memory bandwidth-sensitive hardware,
like GPUs [86], might not significantly improve performance as
memory requests for zero values, in these works, are still issued to
the memory system.

Our goal, therefore, is to use zero values to eliminate unnec-
essary memory requests. However, current hardware processor
architectures, including out-of-order execution [19] and pipelin-
ing [71], prevent hardware from utilizing these special values as
zero-related instructions are usually issued before being optimized.
Previous research [62] suggests using speculative execution to op-
timize these zero-related instructions in advance, but the cost of
rollback operations caused by incorrect predictions is not negligible
for GPU architectures. The lazy execution processor is more suited
for optimizing zero-valued data as it provides a large look-ahead
distance. To the best of our knowledge, there are no prior works that
have been able to optimize the GPU with zero-related optimization
and lazy execution.

Lazy execution cores provide long look-ahead distances to dy-
namically optimize instructions. This paper primarily discusses the
integration of lazy execution cores with zero caches. Additionally,
when combined with approximate computing methodologies like
Doppleganger [52], lazy execution cores can dynamically coalesce
memory requests for similar data at runtime. Furthermore, lazy
execution cores can cooperate with other zero-skip methodologies,
such as sparse tensor cores [82, 91] to optimize instructions on-
line. There are also related accelerator works, including Forms [85],
Gospa [22], S2ta [46], OLAccel [58].

/*generating reqs. :         cycles in total. */
flat_load_dwordx4 v[41:44], v[41:42] 
flat_load_dwordx4 v[45:48], v[47:48]
/*other insts.:        cycles in total. */
……
/*insts. below:        cycles in total.*/
v_mul_f32_e32 v65, v38, v45 
v_mul_f32_e32 v66, v38, v46
……
v_mac_f32_e32 v65, v39, v41 
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Figure 1: The execution timeline of a snippet from theMM[2]
benchmark, using two wavefronts, illustrates the perfor-
mance improvement of LazyCore over the baseline. To bet-
ter illustrate the benefits of our methodology, we assume a
memory request is served with a latency of 64 cycles. The
baseline degrades overall GPU performance by eagerly is-
suing non-critical memory requests (𝐿𝐷0

0), which block the
critical memory requests 𝐿𝐷1

1 from Wavefront1. In contrast,
LazyCore issues memory requests when needed, and reduces
memory system congestion.

3 observations and challenges
The LazyGPU architecture is rooted in insights into GPU execution
and data patterns. In this section, we present our observations and
challenges that motivate the benefits of the LazyGPU.

Observation 1: Issuingmemory requests onlywhenneeded
on GPUs has similar and better performance compared to
eagerly issuing memory requests. To validate that lazily issuing
memory requests does not significantly sacrifice GPU performance,
we configure the LazyCore to postpone all memory requests and
only issue them when the fetched value is needed. More details
about the implementation of the LazyCore are discussed in Sec-
tion 4.1.

Although GPUs offer high memory bandwidth, hardware re-
sources like miss status holding registers (MSHRs) and read reorder
buffers [6, 7] still limit memory system parallelism. When excessive
concurrency blocks architectural resources, such as MSHRs, mem-
ory ports, or interconnect bandwidth, it prevents critical memory
requests from entering the memory system. In such cases, high
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Although access latencies in the range of thousands of cycles may
seem high, similar values have been reported in recent research [12,
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Figure 2: The memory access latencies and number of in-
flight memory requests for the Matrix Multiplication (MM)
benchmark [2]with 2048wavefronts on both the baseline and
LazyCore. (a) LazyCore can reduce memory access latencies
compared to the baseline. (b) The memory request issue rate
(increasing slope) is higher on LazyCore than on the baseline,
as LazyCore generates the next batch of memory requests
faster due to reduced memory access latencies. Additionally,
the average ALU utilization of LazyCore is 39.4% higher than
that of the baseline.

access latency becomes a performance bottleneck, as the GPU can
no longer leverage parallelism to hide these latencies effectively.
To mitigate congestion, prior works have explored throttling-based
methods [15, 37, 68], at a cost of limiting bandwidth utilization by
restricting concurrent memory accesses in certain cases.

Instead of reducing concurrency, LazyCore mitigates memory
system congestion by deferring non-critical memory requests while
ensuring that critical memory requests are issued. In general, mem-
ory access latency consist of three parts: queuing, serving, and
networks-on-chip (NoC) latencies [61]. While the serving and NoC
latencies remain relatively stable, queuing latency increases asmem-
ory system congestion grows. Long latency memory transactions,
especially the memory transactions on the critical path, stall the
instruction pipeline, preventing additional memory requests and
reducing bandwidth utilization. By deferring non-critical memory
requests, LazyCore reduces queuing latency, allowing memory in-
structions on the critical path to finish earlier and the instruction
pipelines to issue more memory transactions. Consequently, the
memory bandwidth utilization is increased.

Figure 1 provides an example illustrating the execution differ-
ences between LazyCore and the baseline. As seen in the snippet
of the MM kernel assembly, memory instructions, issued almost at
the same time, can have different levels of urgency. In this particu-
lar example, 𝐿𝐷1 is more urgent than 𝐿𝐷0. On the baseline GPU,
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right y-axis) achieved by LazyCore compared to the baseline.
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Figure 3: The result of the Matrix Multiplication (MM) bench-
mark [2] with the number of wavefronts ranging from 32
(tiny) to 262144 (large), where each wavefront processes the
same workload. (a) LazyCore approaches the baseline as the
number of wavefronts increases from 32 to 1024, and starts
to outperform the baseline beyond 2048 wavefronts. Lazy-
Core performs better than the baseline when the number of
concurrency memory requests is excessive. (b) The memory
access latency approaches around the averagememory access
latency when the number of concurrent memory requests
is excessive. At this point, the latency of LazyCore remains
lower than that of the baseline.

memory requests are issued immediately. However, due to mem-
ory system congestion, some requests are served with a delay. The
memory requests issued later (e.g., 𝐿𝐷1

1 from 𝑤𝑎𝑣𝑒 𝑓 𝑟𝑜𝑛𝑡1) suffer
from a long latency and cause a delay in the execution of subse-
quent instructions that may not depend on fetched data. In contrast,
the LazyCore avoids such congestion by allowing the subsequent
instructions to execute and issuing memory requests only when
needed. As a result, LazyCore achieves higher overall performance
compared to the baseline.

To validate the simplified example introduced above, we conduct
an experiment and monitor how key metrics change over time.
Using MM as an example (see Figure 2), LazyCore significantly
reduces memory access latencies, particularly extreme bursts of
memory access latencies observed on the baseline (see Figure 2a).
Consequently, the LazyCore can issue memory requests more ef-
ficiently, as shown by the steeper slope in Figure 2b. This leads
to higher memory bandwidth utilization and an improvement in
overall GPU performance.
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The LazyCore outperforms the baseline when GPU workloads
become concurrency sensitive, meaning that memory request laten-
cies depend heavily on the number of concurrent memory requests.
Here, we evaluate the matrix multiplication (MM) benchmark [2]
with the number of wavefronts ranging from 32 to 262144, where
each wavefront processes the same workload. The results demon-
strate that the LazyCore approaches the performance of the base-
line and outperforms it beyond 2048 wavefronts. This is because
the LazyGPU reduces memory contention by delaying memory
requests until they are needed. When the number of wavefronts
in GPU workloads is large, GPU workloads become concurrency
sensitive. LazyGPU enhances the memory bandwidth utilization,
thereby improving overall performance.

We then investigate the reason behind the speedup being flat-
tened beyond an input size of 2048. As shown in Figure 2a, memory
contention on the baseline is highest in Stage 1 when processing
the first 𝑁 wavefronts, as memory requests are issued almost si-
multaneously. On the simulated R9 Nano architecture, up to 2560
wavefronts can be executed concurrently. However, the tiled matrix
multiplication (MM) algorithm incurs high register usage, reduc-
ing the maximum number of concurrent wavefronts (𝑁 ) to 768.
In Stage 2, contention decreases as requests become more inter-
leaved. In Stage 3, it further declines as the number of concurrent
wavefronts diminishes. Consequently, the speedup of LazyCore
follows three phases: the highest in Stage 1, moderate in Stage 2,
and the lowest at Stage 3. Thus, in Figure 3a, the speedup initially
increases as the number of wavefront grows, since the overlap
between Stage 1 and Stage 3 decreases. When the number of
wavefronts reaches 2048, Stage 1 does not have overlap with Stage
3, resulting in the maximum speedup 1.4×. Beyond this point, the
length of Stage 2 increases, causing the speedup to decline to 1.1×
when the number of wavefronts is 8192, and finally aligns with
Stage 2 (1.07 × speedup).

Observation 2: Utilizing zero values in GPU applications,
especially employing ⊗ instructions with zero values, is a
potential way to alleviate memory contention. Zero values
widely exist in GPU applications, such as DNA analysis software
(BarraCUDA [41, 88]), singular value decomposition (SVD) [40], and
neural network applications [27, 59, 66]. Among these applications,
deep learning applications are the most popular applications for
GPUs. Zero values in deep learning workloads are often introduced
by layers like ReLU [43] or dropout [9]. Pruning methodologies [34,

70, 72, 89, 90] can significantly increase the presence of zero values
by sparsifying the weights of neural networks.

We investigate the inference and training of ResNet-18 [35] with
ImageNet dataset [23].We apply pruning [34] to achieve 50%weight
sparsity, and then analyze the zero-value rates for each layer. We
find that the percentage of data blocks where all data is zero are
44.7% for inference and 40.2% for training when the data block
granularity is 1 byte as evaluated for ResNet-18.

Moreover, we find that these zero values are usually processed
by ⊗ instructions, where the result is unaffected by the value of one
operand if the corresponding operand is zero. For example, the ma-
jor floating-point ALU instructions for benchmarks, including MM
and FIR, are multiply-add instructions (⊗ instructions). Leveraging
this property in combination with memory and ⊗ instructions en-
ables the elimination of memory requests for the operand whose
corresponding operand is zero.

However, the zero values within the inputs and weights of neural
networks can be randomly distributed [34], leading to a decrease
in the percentage of data blocks where all data is zero as the gran-
ularity of the data block increases. As shown in Figure 4, when
the granularity is 32 bytes, the percentages of data blocks where
all data is zero are 2.7% for inference and 4.8% for training. These
values are significantly lower compared to when the granularity
of the data block is 1 byte, as shown in Figure 4. Unfortunately, on
modern GPUs [5, 49, 77], the transaction sizes for data transfers
from DRAM to L2 or L2 to L1 on GPU are typically 32 or 64 bytes,
which limits the ability to fully exploit the zero values in memory
transactions as the whole data block need to be fetched as long as
one value inside is non-zero. Leveraging zero values to mitigate
memory contention presents two significant challenges.

Challenge 1: The absence of information, available only
within the core, prevents the memory hierarchy from opti-
mizing transactions in which the portion of the data required
by the wavefront is all zeros. To mitigate the impact of the ran-
dom distribution of zero values, we observe that threads within
a wavefront usually require only a portion of the data block to
be fetched by one memory transaction. For example, the memory
instruction with a stride (stride = 2) requires only half of the data
fetched in a single transaction. Unfortunately, it is not feasible to
eliminate such memory transactions where the required portion of
the data is zero as memory systems lack this information about the
specific data requirements of the wavefront.
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Figure 5: The LazyGPU architecture. The LazyGPU adds new
structures (the Lazy Unit and the Zero Caches) and extends
existing structures (ALU and Register Files) of the GPU cores.
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Figure 6: The data structure housed within the registers to
accommodatememory requests pending to issue for lazy exe-
cution. The busy bit is set to indicate if the physical registers
contain pending memory requests. The inst type is the type
of load instructions. The combination of address upper bits,
address lower bits and offset are the memory access address.
These data can be stored with the destination registers to
mitigate hardware overhead as these registers are available
until the LazyCore issues memory requests.

Challenge 2: The lack of instruction information for pro-
cessing fetched data impedes potential avenues to further
reduce memory requests. Utilizing the combination of memory
and ⊗ instructions poses a challenge, as GPU cores, when issuing
memory requests, do not have future information about the instruc-
tions that will process the data being fetched. It is inefficient to
issue these memory requests to the memory system and then send
cancel requests once GPU cores realize that these requests are not
needed. The need to cancel data requests would complicate the
overall architecture. In this work, we have developed a solution to
overcome these challenges and describe our solution in Section 4.

4 The LazyGPU Architecture
In this section, we outline the workflow of the LazyGPU microar-
chitecture. We first introduce the mechanism of lazy execution
cores, denoted as LazyCore. Subsequently, we introduce the Lazy-
Core+①, which integrates a new structure, called Zero Caches (to be
described below) with the LazyCore to eliminate memory requests
when all data required by a wavefront is zero while ensuring cache
coherency. Finally, we illustrate the LazyGPU architecture (Lazy-
Core+①②), which eliminates dead memory instructions through
the combination of optimizations with ⊗ instructions and Lazy-
Core+①.

The workflow of the LazyGPU is depicted in Figure 5. The
LazyGPU is built based on lazy execution cores, using the Load-
Store Unit (LSU ) to first send load memory requests into Lazy Unit.
Next, the Lazy Unit stores memory requests information into target
registers and marks them as busy (depicted in Figure 5 (red)). When

the source registers of instructions are busy, the Lazy Unit issues
the corresponding memory requests into the Data Cache. When
the data is ready, the corresponding registers are set as non-busy,
allowing the wavefront to be rescheduled into the compute units
(CU) to resume executing the instruction. Details of the Lazy Unit
and how it interacts with the rest of the GPU will be discussed in
detail in Section 4.1.

Indicated in Figure 5 (blue), the LazyGPU integrates the lazy
execution core with Zero Caches. The LazyCore+① first fetches
the mask for memory requests from Zero Caches. Next, the Lazy-
Core+① eliminates memory requests, where all data required by
a wavefront is zero according to the mask, and then issues the re-
maining memory requests when needed. More details are discussed
in Section 4.2.

Furthermore, the LazyGPU eliminates dead memory requests
through the optimizations between ⊗ and memory instructions,
depicted in Figure 5 (grey). Dead memory requests are those whose
values have no effect on subsequent instructions. For example,
memory requests, which are processed by ⊗ instructions with cor-
responding operands as zero, do not influence the output of this
instruction. These memory requests are subsequently considered
dead if their destination register is rewritten by subsequent in-
structions, signifying that these values are no longer used. We will
elaborate on this in Section 4.3.

4.1 Lazy Execution Cores (LazyCore)
The LazyCore issues memory requests when needed. The LazyCore
marks physical registers to be busy if they are destination registers
of memory instructions, indicating that memory requests are pend-
ing due to the lazy mechanism. LazyGPU employs a busy bit for
physical registers, enabling efficient dependency management with
minimal hardware overhead. The busy bit illustrated in Figure 6 de-
notes the one-bit introduced by the LazyCore to mark the busy sta-
tus. Memory instructions, including those in both AMD GCN3 [48],
and NVIDIA’s PTX [47], allow for multiple target registers for one
instruction. On the LazyCore, each of these registers is marked
as busy since subsequent instructions might independently utilize
them. For example, the instruction flat_load_dwordx4 v[33:36],
v[30:31] loads data into registers v33 to v36, requiring that each
register be marked as busy independently.

The LazyCore verifies if the source registers required by the
executing instruction are ready, as their corresponding memory re-
quests may still be pending due to lazy execution. When the source
registers of instructions are non-busy, LazyCore processes these
instructions the same as the baseline GPU cores except for memory
instructions, which are issued when needed. When encountering
busy source registers, the Lazy Unit dispatches the corresponding
memory requests to the memory system. When the source registers
become non-busy after completing these memory requests, the
instruction is re-executed to avoid changing the pipeline.

Address translation. Lazy Unit operates on virtual addresses.
On architectures with VIPT (Virtually Indexed, Physically Tagged)
L1 caches, memory addresses are translated to physical addresses
before being sent to the L1. In contrast, on architectures with VIVT
(Virtually Indexed, Virtually Tagged) L1 caches, memory requests
are sent to L1 without translation. The evaluated architecture uses
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Table 1: The inst type, that is stored in the physical registers,
indicates the instruction type or the offset of the first desti-
nation register for instructions withmultiple target registers.
The ld.XB means loading X bytes of data into current and its
subsequent register and reg−𝑌 indicates that the ID for the
first destination register of multiple target register instruc-
tions is the current register ID minus 𝑌 .

Inst Type ld.1B ld.2B ld.4B ld.8B ld.16B reg−3 reg−2 reg−1
Binary 100 101 110 111 000 011 010 001

VIPT L1 caches, and the TLB translation overhead is accounted for
in the evaluation of LazyCore.

To mitigate hardware overhead, all memory request information
from the LazyCore is stored within the destination registers of mem-
ory instructions, as shown in Figure 6. The destination registers
are available as the LazyCore issues memory requests before using
them. These memory requests usually encapsulate information,
including the tid, inst type, address, and offset. The tid specifies the
thread id within the wavefront requesting the data, while the inst
type denotes the instruction type for memory requests. Further-
more, the address represents the starting memory address of the
data block for the transaction, while the offset specifies the location
of the required data within the block.

The tid is not required to be stored as memory requests are
buffered within the registers corresponding to their respective
threads. Moreover, we segregate the address into the upper bits
of address and lower bits of address. The allocation of bits for the
lower bits is contingent upon the available remaining space within
the register, while the upper bits of address are those remaining
bits, which are shared among all threads within the wavefront. In
our experience, we find that it is rare for memory requests from
one memory instruction of one wavefront to have different upper
bits as they only require the highest remaining bits to be the same.
Moreover, memory requests exhibiting different upper bits of ad-
dress compared to their counterparts are promptly issued without
lazy execution.

The inst type indicates the instruction type for the memory re-
quests, as shown in Table 1. For GPU architectures, including AMD
GCN3 and PTX, memory instructions allow for multiple target reg-
isters for one instruction. However, subsequent instructions might
not initially utilize the first destination register for these memory
instructions with multiple target registers. The 𝑟𝑒𝑔−𝑌 , as shown in
Table 1, guides the LazyCore to locate where the memory request
information is stored. Note that for GPU architectures allowing at
most 4 target registers, 3 bits are sufficient to include the instruc-
tion information and the offset to the first destination register. For
architectures that support loading 8 or more target registers, we can
use alternative methodologies, such as extending the inst type bits
or allowing multiple jumps to find the first destination registers.

In conclusion, GPUs have numerous cores, and even minor hard-
ware additions can lead to substantial hardware overhead. LazyCore
stores most memory transaction information into destination regis-
ters, effectively minimizing hardware overhead.
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Figure 7: LazyGPU leverages Zero Caches to derive masks
that indicate whether the data to be fetched is zero, subse-
quently eliminating readmemory requestswhere the portion
of data required by wavefronts is entirely zero. For the write
instruction, LazyGPU writes zero masks into Zero Caches to
maintain cache coherence.

●●● // calculate addr a=[a1,a0]
ld reg0, [a1,a0]   //issue zero load req
●●● // calculate addr b=[b1,b0]
ld reg1, [b1,b0]  //issue zero load req
mac reg2, reg1, reg0 //the inst executing
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Figure 8: An example of how the LazyGPU eliminates mem-
ory requests via masks and multiply-add instructions.

4.2 Lazy Cores with Zero Caches (LazyCore+①)
Integrating lazy cores with Zero Caches (LazyCore+①) can further
enhance GPU performance by leveraging information available
only within the core to eliminate memory requests where the por-
tion of the fetched data required by wavefronts is entirely zero. To
address Challenge 1, where the memory hierarchy lacks memory
transaction information within the cores, LazyCore+① first fetches
masks from Zero Caches and then utilizes information from the
core to identify the portions of data required by wavefronts. By
combining the masks with the information from the core, Lazy-
Core+① verifies if the required data is entirely zero. Removing these
unnecessary memory requests reduces bandwidth contention and
queuing latency, thereby improving GPU performance.

Figure 7 illustrates the workflow of LazyCore+① for handling
read andwritememory transactions. For read requests, LazyCore+①

first retrieves the response (Zero Read Rsp) from the Zero Caches and
then combines it with instruction information to determine if the
required data is entirely zero. If this condition is met, LazyCore+①

eliminates the corresponding memory request, sets the busy bit to
false, and initializes the register to zero. Otherwise, the LazyCore+①

issues the read request to the main caches. For write requests, the
LazyCore+① only sends the Zero Write Req into the Zero Caches if
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the data being written is zero. Otherwise, it sends both Zero Write
Req and Write Req for the non-zero data to the Zero Caches and
main caches, respectively. Write Req and Zero Write Req are the
write requests for original data and their masks, respectively.

LazyCore+① can rapidly verify if the data being fetched is zero
using Zero Caches. To ensure a fair comparison without adding
cache structures for the LazyCore+① and LazyGPU, parts of the
normal caches are repurposed as Zero Caches. Each single bit within
the Zero Caches can representM bits of data from the main memory
(we set one bit to represent 32 bits throughout this work). Addition-
ally, the Zero Caches have the same transaction size as the normal
cache, allowing one transaction in the Zero Caches to transfer the
zero masks forM transactions in the normal cache.

Furthermore, data is interleaved across multiple memory par-
titions to bolster memory-level parallelism. If the LazyCore+①

requires load/store masks for multiple partitions, multiple zero
memory requests are necessary, leading to significant memory
contention. Therefore, the LazyCore+① configures each memory
request within Zero Caches to correspond to data from the same
partition. If the number of partitions is P and the interleaving size
is I, one memory transaction within Zero Caches represents M
consecutive data blocks if I ≥ M. If I < M, it represents M

I·P
consecutive sets of I data blocks.

Figure 8 (Step 1, 2) illustrates an example of how LazyCore+①

eliminates memory requests where the data required by awavefront
is entirely zero. Within the GPU, the instruction processes W data
simultaneously, whereW represents the number of threads within
one wavefront. Typically, W is 32 or 64 for modern GPUs. For
clarity, in this example, we setW to 6, and the transaction size is 4
bytes, represented as one box in Figure 8.

The LazyCore+① issues Zero Read Reqs during the execution
of the ld instruction in Step 1. Upon receiving the responses, it
identifies registers with zero values and sets these registers to zero
while marking their busy bit as false. This initialization occurs
before the execution of themac instruction. Subsequently, in Step 2,
LazyGPU eliminates all memory requests associated with registers
that have zero values and busy bits marked as false, as illustrated in
Figure 8 (Green Boxes). This process reduces unnecessary memory
traffic and improves performance.

Cache coherence. Ensuring cache coherency is crucial for the
LazyCore+①. LazyGPU updates only the zero cache when a mem-
ory request writes only zeros to reduce memory traffic. A coherence
issue may arise if the normal caches return data faster than zero
caches [26, 36]. We access the zero caches before the normal caches,
ensuring that coherence operates correctly.

To maintain coherence between Zero Caches and other on-chip
caches, we employ the same coherence mechanisms as those used
by the corresponding normal caches. For example, in the evaluated
architecture, L1 Zero Caches adopt the same write-around mecha-
nism as the normal L1 cache. Since writes bypass the L1 and are
forwarded directly to the L2, the L1 Zero Caches do not retain dirty
data. L2 Zero Caches, consistent with the normal L2 design, is physi-
cally partitioned, with each bank responsible for a disjoint region of
the memory address space. As a result, the L2 Zero Caches remain
coherent without requiring additional hardware-level coherence
mechanisms.

Table 2: The configuration parameters used for R9 Nano
GPUs on the MGPUSim [73] to evaluate the LazyGPU. GPRs
are the general-purpose registers.

Component R9 Nano LazyGPU

Shader Array (SA) 16 per GPU 16 per GPU
CU 1.0GHz, 4 per SA 1.0 GHz, 4 per SA
L1 Vector Cache 64KiB, 4-way per SA 56KiB, 4-way per SA
L1 Zero Cache 8KiB, 4-way 1 per SA
L2 Cache 256KiB, 16-way 8 per GPU 224KiB, 16-way 8 per GPU
L2 Zero Cache 32KiB, 16-way 8 per GPU
DRAM 4GiB 4GiB
GPRs 64KiB, 4 per CU 64KiB, 4 per CU

4.3 LazyCore+① with ⊗ Instructions (LazyGPU)
By incorporating ⊗ instructions, LazyGPU (LazyCore+①②) can
further eliminate memory requests based on the LazyCore+①. As
depicted in Challenge 2, conventional GPUs issue memory re-
quests while executing memory instructions, making it impossible
to know which instructions will process the fetched data at the time
of issuing. LazyGPU addresses this limitation by issuing memory
requests only when needed, allowing the LazyCore to possess the
necessary information about the instructions that will process the
data. When decoding instruction opcodes, LazyGPU identifies ⊗
instructions, and optimizes memory requests accordingly.

The LazyGPU eliminates memory requests associated with these
⊗ instructions via two steps. The LazyGPU first suspends issu-
ing memory requests when their corresponding operands in ⊗
instructions evaluate to zero. This is because the outcomes of ⊗
instructions are unaffected by the values of these memory requests.

Then, LazyGPU permanently eliminates memory requests when
the destination registers of these suspended requests are overwrit-
ten by other instructions, or when the execution of the current
wavefront is completed. This indicates that the values of these
memory requests are no longer useful. In contrast, if subsequent
instructions still rely on the data from the suspended memory re-
quests before their elimination, LazyGPU ensures these requests,
whose busy bit is true, are issued to the memory system to satisfy
the execution of those instructions.

Figure 8 (Step 3, 4, 5) illustrates an example of how LazyGPU
eliminates memory requests whose corresponding operand con-
tains zero value. As shown in Step 3 of Figure 8, LazyGPU suspends
memory requests (Orange Box) as they multiply with zero. Then,
in Step 4, memory requests (Blue Box), associated with source
registers containing non-zero values, are issued to the memory
system. Subsequently, LazyGPU proceeds to execute the mac and
subsequent instructions. Upon subsequent instructions overwriting
reg0 and reg1, the LazyGPU permanently eliminate these memory
requests as depicted in Step 5 (orange boxes change to green boxes).

5 EVALUATION
In this section, we present a comprehensive evaluation of LazyGPU.

5.1 Experimental Setup
Architecture simulated. We evaluate the LazyGPU using the
AMD GCN3 architecture as its Instruction Set Architecture (ISA) is
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Table 3: The benchmarks used to evaluate the LazyGPU.

Abbr. Suite Workload

AES Hetero-Mark [74] AES-256 Encryption.
FIR Hetero-Mark [74] FIR filter.
KMeans Hetero-Mark [74] Kmeans Clustering.
PR Hetero-Mark [74] Pagerank.
SC AMD APP SDK [2] Simple Convolution.
MM AMD APP SDK [2] Matrix Multiplication.
MT AMD APP SDK [2] Matrix Transpose.
NBody AMD APP SDK [2] Physics Simulation.
ReLU DNNMark [25] Rectified Linear Unit.
SPMV SHOC [20] Sparse Matrix-Vector Multiplication.
FFT SHOC [20] Fast Fourier Transform.
Stencil2d SHOC [20] Stencil Computation.
BFS SHOC [20] Breadth-First Search.
BICG PolyBench [31] BiCGStab Linear Solver [80].
ATAX PolyBench [31] Matrix Transpose, Vector Multiplication.
Backprop Rodinia [13] Back Propagation.
NW Rodinia [13] Needleman-Wunsch algorithm.
ResNet-18 [35] Neural Network applications.
LLaMA 7B [79] Large Language Model.

openly accessible. Gutierrez et. al. [33] have pointed out the substan-
tial impact that ISAs on the conclusions from the simulation results.
Specifically, we utilize R9 Nano, which is the default architecture
of the MGPUSim [73] and belongs to the AMD GCN3 architecture,
as the baseline to validate the LazyGPU. Recently, NaviSim [10]
introduces RDNA, which is mainly for gaming and 3D rendering,
into MGPUSim. We do not use RDNA as CDNA is still the default
architecture for MGPUSim and current supercomputer centers, in-
cluding El Capitan, and Frontier [78], still use AMD GPUs with
CDNA architecture.

The detailed configuration for R9 Nano and the LazyGPU are
shown in Table 2. The DRAM, L2, and L1 bandwidth of GPUs in
this work are 256 GB/s, 512 GB/s, and 2 TB/s, respectively, with
a theoretical performance of 8.192 TFLOPS. We use the default
latencies of L1, L2, and DRAM in MGPUSim, which are 60, 112,
and 146 cycles (round-trip from the CU), respectively. The GPU is
configured to use core-side L1 caches and memory-side L2 caches.
L1 and L2 caches are connected via a crossbar. The memory system
consists of 16 L2 caches, each connected to a DRAM channel, with
L2 caches organized in a 128B interleaving fashion. The DRAM
operates in a first-come, first-served manner.

In the LazyGPU, the L1 Zero Cache is shared among all CUs
within a shader array, enhancing their cache hit rate. Consequently,
each GPU hosts 16 L1 Zero Caches, aligning with the number of
shader arrays. The transaction size fromDRAM to L2 and from L2 to
L1 is typically 32 or 64 bytes on AMD and NVIDIA GPUs [5, 49, 77].
In all experiments, we set the default transaction size to 32 bytes.

Simulator utilized. We adapt MGPUSim [73] to support the
LazyGPU. We choose MGPUSim as it is the simulator that supports
the latest AMD GPU architecture and its comprehensive suite of
tools for analyzing GPU workload behavior [75].

GPU workloads. We evaluate the LazyGPU on a wide range of
applications as shown in Table 3. All GPU workloads are developed
in OpenCL and compiled using the AMD ROCm compiler with
the default settings. For benchmarks, including AES, FIR, SC, MM,
and ReLU, we randomly initialize their inputs to zero based on
the sparsity rate. For applications with a sparsity structure, such

as SpMV, we set only their inputs without sparsity structure to
zero according to the sparsity rate. This scenario is common when
pruning weights for Graph Neural Networks (GNN) [32, 87]. For
benchmarks whose inputs lack zeros, including NW and BFS, we
always keep their default inputs. When the sparsity is 0, we keep
the default inputs for all benchmarks.

The inputs and weights of ResNet-18 and large language models
(LLMs) [55, 79] are obtained from PyTorch checkpoints [60]. The
data type is float as full-precision training remains prevalent in
most AI models to achieve high accuracy. For the ResNet-18, we
use ImageNet [23] as the dataset. We apply the pruning methodol-
ogy [34] to evaluate ResNet-18 with unstructured weight sparsity.
Han et al. [34] point out that the weight sparsity can progressively
increase from 0% to 90% during the training process, as redundant
weights are pruned to improve model efficiency without sacrificing
accuracy. The sparsity of weights is zero without pruning.

LLMs have emerged as one of the most important workloads on
GPUs due to their remarkable performance across various natural
language process tasks. To evaluate the efficiency of LazyGPU,
we also test LLaMA 7B [79] with the WikiText [51] validation set.
We use Wanda [72] to introduce unstructured sparsity by pruning
weights while maintaining accuracy. Simulating end-to-end ML
workloads on GPU simulators is extremely time-consuming. To
address this, we employ the Photon sampling methodology [45]
to simulate kernels when full execution is infeasible. Specifically,
we apply kernel-level sampling to ResNet-18 and both kernel-level
and wavefront-level sampling to LLaMA 7B.

Speedup. We compare the kernel execution time of the LazyGPU
to that of the baseline GPU architecture, R9 Nano. The speedup
is calculated using 𝑇𝑏𝑎𝑠𝑒

𝑇
, where 𝑇𝑏𝑎𝑠𝑒 and 𝑇 represent the kernel

execution time of workloads executing on the baseline and our
improved architecture, respectively.

5.2 Overall Performance
LazyCore. Figure 9 demonstrates that the LazyCore achieves a
1.05× and a 1.01× performance improvement for the inference
and training of ResNet-18 compared with the baseline, establish-
ing a foundation for further optimizations. Specifically, the layer
conv5_2_1 exhibits a 1.28× performance improvement for infer-
ence, while the conv5_1_2 layer has a 1.28× performance improve-
ment for the training, demonstrating that the LazyCore can achieve
better performance compared with the baseline.

LazyCore+①. As depicted by Figure 9, the LazyCore+① is built
upon the LazyCore and incorporates Zero Caches to eliminate mem-
ory requests whose values required by wavefronts are all zero. It
achieves a 1.16× and a 1.07× speedup for the inference and training
of the ResNet-18 over the baseline, respectively.

LazyGPU. The LazyGPU, which integrates the ⊗ optimization
with LazyCore+①, yields a significant performance improvement
over the baseline, achieving a 1.31× and a 1.24× improvement for
the inference and training of ResNet-18, respectively, as shown in
Figure 9. Notably, the layer conv5_2_1 and conv5_1_2 exhibit the
highest speedups, with a 1.91× speedup for the inference and a
1.97× speedup for training among all layers.

Comparison with Eager Execution and Zero Caches No
prior works have explored zero caches with eager execution in GPU
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Figure 9: The speedup for ResNet-18 and its layers for the inference and training via the LazyCore, LazyCore+①, and Lazy-
Core+①② (LazyGPU) over the baseline, where pruning [34] is applied to achieve 50% weight sparsity. DS means downsampling.
LazyCore denotes issuing memory requests when needed. LazyCore+① represents the optimization of discarding memory
requests whose values required by wavefronts are all zeros. LazyGPU signifies the optimization of eliminating memory requests
whose value have no effect for subsequent instructions. The speedups of LazyGPU are 1.31× for inference and 1.24× for training.
In comparison, we evaluate eager execution with zero caches [26, 36], achieving speedups of 1.26× and 1.02×, respectively.
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Figure 10: The LazyGPU outperforms the baseline for the
inference and training of ResNet-18 across different weight
sparsities [34]. The results show that the performance im-
provement increases as the weight sparsity increases. We set
the beginning of the y-axis to 1 for clarity.

architectures. We evaluate eager execution with zero caches [36] on
GPUs, showing that it improves ResNet-18 with 50% weight spar-
sity by 1.26× for the inference and 1.02× for the training. LazyGPU
outperforms this approach [36] as the zero caches with eager exe-
cution still issue memory requests for zero values to the memory
system.

ResNet-18with differentweight sparsities. Figure 10 presents
the speedup achieved by LazyGPU compared to the baseline for
ResNet-18 inference and training across different weight sparsities.
We evaluate LazyGPU’s performance under varying weight sparsity
levels, as weight sparsity can increase from 0% to 90% during the
training process by pruning redundant weights [34].

When weight sparsity is zero, LazyGPU still improves perfor-
mance. This is because lazy execution contributes a performance
improvement of 1.05× for inference and 1.01× for training. Addi-
tionally, zero values existing in the inputs, introduced by layers
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Figure 11: The LazyGPU outperforms the baseline on the
same hardware configuration for the LLaMA 7B [79] infer-
ence, with unstructured pruning applied using Wanda [72].
The speedup (left y-axis with bars in (a)) increases as sparsity
rises from 0% to 60%, while the perplexity (right y-axis with
lines) maintains accuracy. (b) The speedup at 50% sparsity
shows that LazyGPU achieves higher speedup with larger
L2 cache sizes. The speedup is calculated compared to the
baseline configuration with the same L2 cache size.

such as ReLU and dropout, further enhance performance. As a re-
sult, LazyGPU achieves a final speedup of 1.20× for inference and
1.16× for training when the weight sparsity is zero.

Moreover, we observe that the performance improvement in-
creases from 1.20× to 1.37× as weight sparsity grows from 0% to 90%
for inference, and from 1.16× to 1.29× for training. This indicates
that LazyGPU performs better as more zero values are introduced
into the neural networks.

Large language models (LLMs). We observe that LazyGPU
can also improve the performance of LLMs, as shown in Figure 11.
When the weight sparsity is zero, LazyGPU demonstrates a 1.52×
speedup compared to the baseline. Unlike ResNet-18, the infer-
ence of LLaMA 7B does not have specific layers, such as ReLU and
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Figure 12: The speedup of LazyGPU compared to the baseline
across each benchmark with original inputs (0% sparsity) and
inputs with varying sparsity (5%, 10%, 20%, and 50%).

dropout, to introduce zero values. Therefore, performance speedup
is solely attributed to the bandwidth improvement of lazy execu-
tion, as discussed in Section 3. Furthermore, as weight sparsity
increases, the speedup achieved by LazyGPU also grows. The re-
sults presented in Figure 11a show that LazyGPU achieves a 2.18×
speedup at 60% weight sparsity. This demonstrates that LazyGPU
can continue improving the performance of LLaMA 7B as weight
sparsity increases.

Additionally, we evaluate LazyGPU with varying L2 cache sizes
as the inputs and weights for LLMs are large and highly sensitive to
cache sizes. The results, as shown in Figure 11b, demonstrate that
LazyGPU consistently delivers higher performance compared to
the baseline, even with larger L2 sizes. This indicates that LazyGPU
effectively optimizes memory accesses and reduces contention,
leading to improved performance regardless of the cache size.

Results across diverse GPU workloads. As shown in Fig-
ure 12, LazyGPU achieves up to 1.67× speedup (1.08× on average)
across various GPU workloads using the default inputs (sparsity =
0%). These results demonstrate that lazy execution is not limited to
neural network applications. Instead, it benefits a broad spectrum
of GPU workloads by enhancing memory bandwidth utilization,
thereby improving overall performance.

Moreover, LazyGPU, as shown in Figure 12, consistently im-
proves GPU performance as the sparsity of the inputs increases.
When the sparsity reaches 50%, LazyGPU achieves up to 3.66×
speedup (1.28× on average). Specifically, for workloads whose
inputs lack zero, including BFS and NW, LazyGPU achieves simi-
lar performance. For streaming workloads such as ReLU and FIR,
the performance improvement can be attributed to the compres-
sion of zero values into a single bit, which further reduces band-
width consumption. However, LazyGPU is designed to optimize
concurrency-sensitive workloads, resulting in lower performance
improvements for latency-sensitive cases. Workloads such as MT,
AES and Stencil2D [2] assume that all or most data can be buffered
in shared memory. Consequently, they first fetch data in shared
memory before executing ALU instructions, making them inher-
ently latency-sensitive.

In summary, the LazyGPU improves the performance of GPU
workloads by reordering memory requests and effectively elimi-
nates memory requests associated with zero values or ⊗ instruc-
tions. It yields a significant speedup over GPU workloads, including

Table 4: Cache configurations. Zero Caches are denoted as
ZCache. 𝛼𝐿1 + 𝛽𝐿2 indicates that LazyGPU utilizes 𝛼 L1 and
𝛽 L2 caches as Zero Caches. 1

8L1 +
1
8L2 is the configuration

utilized by the LazyGPU.

Configurations L1 Vector Cache L1 ZCache L2 Cache L2 ZCache
1
2𝐿1 +

1
2𝐿2 32KiB per SA 32KiB per SA 128KiB 128KiB

1
2𝐿1 +

1
8𝐿2 32KiB per SA 32KiB per SA 224KiB 32KiB

1
2𝐿1 +

1
32𝐿2 32KiB per SA 32KiB per SA 248KiB 18KiB

1
8𝐿1 +

1
2𝐿2 56KiB per SA 8KiB per SA 128KiB 128KiB

1
8L1 +

1
8L2 56KiB per SA 8KiB per SA 224KiB 32KiB

1
8𝐿1 +

1
32𝐿2 56KiB per SA 8KiB per SA 248KiB 18KiB

1
16𝐿1 +

1
2𝐿2 60KiB per SA 4KiB per SA 128KiB 128KiB

1
16𝐿1 +

1
8𝐿2 60KiB per SA 4KiB per SA 224KiB 32KiB

1
16𝐿1 +

1
32𝐿2 60KiB per SA 4KiB per SA 248KiB 18KiB
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Figure 13: The speedup of LazyGPU outperforms that of the
baseline for the inference and training of ResNet-18 with-
out pruning across various cache configurations, as listed in
Table 4. We select 1

8L1 +
1
8L2 as it performs the best perfor-

mance among the evaluated configurations.

ResNet-18, LLaMA 7B. LazyGPU is not limited to neural network
applications; it also demonstrates performance improvements in
various benchmarks, highlighting its broad applicability and effec-
tiveness in optimizing GPU performance.

5.3 Zero Caches
We opt to adopt the 1

8𝐿1 +
1
8𝐿2 configuration as the default config-

uration for the LazyGPU, as outlined in Table 2. This configuration
offers an adequate balance by providing ample caches for buffering
masks, while simultaneously ensuring that the remaining caches
are sufficient to buffer the original data.

Selecting the right partitioning is important for LazyGPU to
achieve good performance. As shown in Figure 13, the performance
of the LazyGPU over the baseline is showcased across various cache
configurations, with detailed specifications provided in Table 4. To
ensure a fair comparison, the LazyGPU ensures that the aggregate
normal cache and zero cache sizes match those of the baseline. We
separate zero caches as they have different tag sizes compared to
normal caches. For LazyGPU, the tag sizes are 21 for normal L1
caches and 19 for L1 zero-caches. This difference arises from their
different cache sizes and each bit in the zero-cache representing 4B.

As illustrated in Figure 13, we note that small Zero Caches can
impede the efficiency of Zero Read/Write Req, thereby resulting
in diminished GPU performance. For example, the configuration
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Figure 14: The memory requests that are eliminated by Zero Caches and ⊗ instructions for ResNet-18 and its layers for the
inference and training, where pruning [34] is applied to achieve 50% weight sparsity. DS means downsampling.
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Figure 15: The percentage of memory requests mitigated by
LazyGPU compared to the baseline for the inference and
training of ResNet-18. It demonstrates that LazyGPU effi-
ciently reduces the contention within the memory system.
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Figure 16: The cache hit rate of the baseline and the LazyGPU
for the inference and training of ResNet-18. Z-L1 and Z-L2
mean L1 and L2 zero caches. The hit rate of Z-L2 on LazyGPU
is about 99%, preventing zero mask fetches from becoming
a bottleneck. Additionally, the L1 hit rate of LazyGPU is
improved due to the Z-L1.

1
16𝐿1+

1
32𝐿2 yields a reduction of performance to 55.1% and 76.9% of

the baseline for the inference and training of ResNet-18. Conversely,
excessively large Zero Caches lead to a significant reduction in the
working-set size that the cache can contain, consequently slowing
down GPU performance. For example, the configuration 1

2𝐿1 +
1
2𝐿2 results in just 97.9% and 76.1% baseline performance for the
inference and training of ResNet-18.

Furthermore, the configurations with 1
8𝐿2 Zero Caches exhibit

similar performance, highlighting the criticality of L2 cache and
L2 Zero Caches for LazyGPU. When the average access latency in
a cache miss of the L1 Zero Caches or L1 cache misses are high
due to their small size, TLP mitigates memory access latencies.
Nonetheless, the significance of size of the L2 normal caches and

L2 Zero Caches persists due to substantial costs associated with
accessing DRAM.

5.4 Reasons behind Performance Improvement
We investigate the reasons behind the performance improvement
of the LazyCore+① and LazyGPU, focusing on the memory request
elimination attributed to the optimization① and②. Figure 14 shows
that the optimization ① eliminates memory requests whose fetched
data required by a wavefront is all zero, contributing to 22.5% and
26.0% of the eliminated requests for the inference and training of
ResNet-18, respectively. Inside these requests, transactions whose
fetched data block is entirely zero only contribute to 2.7% and 4.8%
of the eliminated requests for ResNet-18 inference and training, as
depicted in Figure 4. The LazyCore+①, which is the combination
of the LazyCore with Zero Caches, amplifies memory request elim-
ination by removing requests whose fetched data block contains
non-zero data.

The optimization ② also contributes to the memory request elim-
ination. For example, it eliminates 8.6% and 5.4% of the memory
requests for ResNet-18 inference and training, respectively. Addi-
tionally, for some layers of ResNet-18, including conv2_1_1 and
conv5_1_1, the optimization ② outperforms the LazyCore+① on
the contribution for the overall performance improvement.

We investigate the number of memory requests processed by
each level of the memory hierarchy, as shown in Figure 15. The re-
sults reveal that LazyGPU effectively eliminates memory requests,
reducing them by 9.7%, 29.9%, and -4.2% for inference and 19.4%,
25.1%, and 2.8% for training at the L1, L2, and DRAM levels, re-
spectively, when the weight sparsity is zero. We observe that the
memory requests at the DRAM level slightly increase. This is be-
cause the L2 normal cache size of LazyGPU is smaller than that of
the baseline. Our findings show that LazyGPU primarily reduces
memory requests at the L1 and L2 levels, which account for approx-
imately 97.0% of the total memory requests.

When the weight sparsity is 50%, we observe significant reduc-
tion in memory requests. Specifically, LazyGPU reduces requests by
27.6%, 45.6%, and -1.4% for inference and 31.8%, 38.7%, and 3.9% for
training at the L1, L2, and DRAM levels, respectively. This indicates
that as LazyGPU eliminates more redundant memory requests, the
overall pressure on each level of the memory system decreases.

Figure 16 demonstrates cache hit results of L1, L2 and corre-
sponding zero caches. LazyGPU prevents zero mask fetching from
becoming a bottleneck as the L2 zero cache hit rate reaches 99%.
Additionally, one memory transaction from L2 zero caches to L1
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zero caches provides masks for 1024 bytes. LazyGPU achieves better
performance due to multiple factors, including reduced memory
contention and improved L1 hit rate as shown in Figure 15 and
Figure 16, respectively.

5.5 Hardware Overhead
The hardware overhead of the LazyGPU comes from two parts: (1).
busy bits for GPRs to trace instruction dependencies and record
if memory requests are completed; (2). address upper bits to store
address upper bits shared by a group of registers with the same
register name but belonging to different threads inside a wavefront.

Busy Bits. The LazyGPU uses busy bits to detect the instruction
dependency and record the response of memory requests. As each
SIMD unit has 16,384 physical registers, the LazyGPU requires
8KiB for each compute unit. Alternatively, reducing the number of
registers to accommodate busy bits is another option to maintain
the same area. However, performance may degrade if the reduced
register count becomes insufficient for some workloads.

Addresses Upper Bits. Within R9Nano, there are four distinct
types of load memory requests, loading 1, 2, 4, and 8, 16 bytes. The
number of register offset types is 3 due to the maximum number of
target registers. Therefore, a 3-bit field is designed for inst type, as
shown in Table 1. Given the size of the transaction being 32 bytes,
the required size for the offset field is determined to be 5 bits. The
remaining address lower bits encompass 24 bits as the register of
R9Nano has 32 bits. As the memory address of R9Nano is 64 bits,
35 bits are required to represent addresses’ upper bits.

The address upper bits are shared by a group of registers with
the same register name but belonging to different threads inside a
wavefront to save hardware resources. For GPUs where the number
of threads per wavefront is 𝑁 and the physical register count is𝑀 ,
the LazyGPU requires 35𝑀

𝑁
bits to record address upper bits. For

example, each compute unit of the AMD R9 Rano has 4 SIMD units
and each SIMD unit has 16,384 physical vector registers. Therefore,
each compute unit requires an additional 4.375 KiB for address upper
bits, given the number of threads per wavefront is 64.

In conclusion, the total hardware overhead introduced by the
LazyGPU is an area increase of only 0.009% compared with the
overall die size of R9 Nano [4].

6 CONCLUSION
In this paper, we propose a new GPU architecture, the LazyGPU.
The LazyGPU employs lazy execution cores, deferring memory
requests until needed to alleviate unnecessary memory contention.
Additionally, LazyGPU utilizes Zero Caches and special instructions,
such as multiplication and multiply-add, to eliminate memory re-
quests with zero values or those that do not affect the outcome
of the program. Our experimental results demonstrate that the
LazyGPU outperforms the baseline architecture in both the infer-
ence and training of ResNet-18, achieving 1.31× and 1.24× speedup,
respectively. LazyGPU can also improve the performance of LLaMA
7B by 1.52× and 2.18× when the weight sparsity is zero and 60%,
respectively.
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