
NaviSim: A Highly Accurate GPU Simulator for AMD RDNA
GPUs

Yuhui Bao
bao.yu@northeastern.edu
Northeastern University

Boston, MA, USA

Yifan Sun
yifan@cs.wm.edu
William & Mary

Williamsburg, VA, USA

Zlatan Feric
feric.z@northeastern.edu
Northeastern University

Boston, MA, USA

Michael Tian Shen
shen.mich@northeastern.edu

Northeastern University
Boston, MA, USA

Micah Weston
weston.m@northeastern.edu
Northeastern University

Boston, MA, USA

José L. Abellán
jlabellan@ucam.edu

Universidad Católica de Murcia
Murcia, Spain

Trinayan Baruah
tbaruah@amd.com

AMD
Santa Clara, CA, USA

John Kim
jjk12@kaist.edu

KAIST
Daejeon, South Korea

Ajay Joshi
joshi@bu.edu

Boston University
Boston, MA, USA

David Kaeli
kaeli@ece.neu.edu

Northeastern University
Boston, MA, USA

ABSTRACT
As GPUs continue to grow in popularity for accelerating demanding
applications, such as high-performance computing and machine
learning, GPU architects need to deliver more powerful devices
with updated instruction set architectures (ISAs) and new microar-
chitectural features. The introduction of the AMD RDNA architec-
ture is one example where the GPU architecture was dramatically
changed, modifying the underlying programming model, the core
architecture, and the cache hierarchy. To date, no publicly-available
simulator infrastructure can model the AMD RDNA GPU, prevent-
ing researchers from exploring new GPU designs based on the
state-of-the-art RDNA architecture.

In this paper, we present the NaviSim simulator, the first cycle-
level GPU simulator framework that models AMD RDNA GPUs.
NaviSim faithfully emulates the new RDNA ISA. We extensively
tune and validate NaviSim using several microbenchmarks and
10 full workloads. Our evaluation shows that NaviSim can accu-
rately model the GPU’s kernel execution time, achieving similar
performance to hardware execution within 9.92% (on average), as
measured on an AMD RX 5500 XT GPU and an AMD Radeon Pro
W6800 GPU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’22, October 8–12, 2022, Chicago, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569666

To demonstrate the full utility of the NaviSim simulator, we carry
out a performance study of the impact of individual RDNA features,
attempting to understand better the design decisions behind these
features. We carry out a number of experiments to isolate each
RDNA feature and evaluate its impact on overall performance, as
well as demonstrate the usability and flexibility of NaviSim.

CCS CONCEPTS
•Computer systems organization→ Single instruction, mul-
tiple data; •Computingmethodologies→Modelingmethod-
ologies; Model verification and validation.

KEYWORDS
GPU, Simulation, Computer Architecture

ACM Reference Format:
Yuhui Bao, Yifan Sun, Zlatan Feric, Michael Tian Shen, Micah Weston,
José L. Abellán, Trinayan Baruah, John Kim, Ajay Joshi, and David Kaeli.
2022. NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’22), October 8–12, 2022, Chicago, IL, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3559009.3569666

1 INTRODUCTION
GPUs have been used to accelerate a wide range of modern data-
centric applications (e.g., artificial intelligence [26], big-data ana-
lytics [1], and high-performance computing workloads [18]), lever-
aging their ever-increasing computing capabilities [32]. With the
continuous demand for higher performance, GPU vendors (e.g.,
NVIDIA and AMD) have been pushing the envelope of GPU perfor-
mance in every new GPU generation. While some GPU generations
are mainly “spec bumps”, other GPU generations introduce major

333

https://doi.org/10.1145/3559009.3569666
https://doi.org/10.1145/3559009.3569666
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

RX 5500 XT’s L0$ L1$ L2$ DRAM

R9Nano’s L1$ L2$
DRAM

Figure 1: Comparing cache latencies between the GCN
and RDNA GPUs, while running the pointer chasing mi-
crobenchmark. The results suggest that, other than the pub-
licly announced changes in the specifications (e.g., cache
sizes), AMD has made many unannounced design improve-
ments (e.g., reducing cache latencies).

64 256 512 768 1024
Problem Size

0

200

400

600

Ti
m

e(
us

)

Turning point in simulation
but not in native execution

Simulation Native Execution

Figure 2: A comparison of a simulator’s reported kernel exe-
cution time and the native RX 5500 XT GPU execution time
when running the BICG benchmark from PolyBench [30].
The experiment is performed using MGPUSim [33], af-
ter only modifying the publicly available parameters (core
count, frequency, cache sizes, DRAM bandwidth, etc.) based
on the validated R9 Nano model. Not only are the perfor-
mance discrepancies high (up to 318%), but the performance
does not follow the trends seen on theRX5500XThardware.

architectural overhauls, changing many aspects of the GPU’s orga-
nization. For example, in 2019, AMD moved away from the GCN
architecture (used by almost all AMD GPUs since 2011) and started
to roll out a new RDNA architecture to be used on their 7nm GPUs.

AMD’s RDNA architecture was a major redesign, as AMD modi-
fied nearly every aspect of the GPU’s architecture. This included
changes to the instruction set architecture (ISA), core architecture,
andmemory hierarchy. In the cores, the RDNA architecture reduced
the number of co-scheduled threads (i.e., the wavefront) from 64
to 32 to cope with a higher level of thread divergence in modern
workloads. The memory hierarchy was also extended, adding an
extra layer of cache between the original L1 and L2 caches. This
reduced the burden of the L2 caches and simplified the massive
L1 to L2 network. In addition to these publicly known changes,
enhancements were also made under the hood. For example, as we
evaluate the AMD RX 5500 XT GPU (RDNA architecture) against
the R9 Nano GPU (GCN3 Architecture) with a pointer chasing
microbenchmark (see Figure 1), the results suggested that the first-
level cache latency was reduced from ≈190 cycles to ≈110 cycles.
This type of hidden change are often ignored when configuring
the baseline GPU implementation, which can impact the validity
of GPU architecture studies.

To date, GPU architecture simulator development in academia
has significantly lagged behind industry schedules. The state-of-
the-art AMD GPU simulators are still modeling the AMD GCN3
architecture [15, 33] (released in 2015), and no publicly available
simulators model the more recent AMD RDNA architectures. The
lack of up-to-date simulator infrastructures can impact a GPU archi-
tect’s ability to explore new innovations targeting next-generation
GPUs.

This lack of GPU simulation tools within academia is potentially
harmful to the computer architecture research community in the
long run. Research papers often describe their research methodol-
ogy using sentences such as “we modify simulator S that is origi-
nally validated against product A to model product B by changing
the number of cores and the cache sizes.” Typically, this product
B is a few generations later than product A, and the study im-
plicitly assumed that the simulator could still correctly model the
new architecture. However, the nuances in the architecture design
and parameter selection may significantly change the performance
characteristics. For example, simply modifying MGPUSim [33] (val-
idated against a 2015-released R9 Nano GPU) to model the RX 5500
XT GPU (RDNA architecture), as shown in Figure 2, can result in
simulation errors as large as 318% when running the BICG bench-
mark from PolyBench [30]. The major inaccuracies reported above
suggests that simply adjusting publicly known parameters is insuf-
ficient to model a brand new architecture and can lead to wrong
conclusions. A careful redesign and re-calibration of the simula-
tor infrastructure are necessary to provide a trustworthy baseline
model for the next generation of GPU architecture research.

To address these issues, we present NaviSim, a GPU simulator
that models AMD RDNA GPUs. NaviSim faithfully emulates the
new AMD RDNA ISA and produces exact application outputs as
recorded on the GPU hardware. Utilizing the Akita simulation en-
gine [33], the same simulation engine that drove MGPUSim [33],
we enable modularity and high-performance parallel simulation.
We integrate DRAMSim3 [27] to accurately model different DRAM
technologies, including HBM [25] and GDDR [19]. NaviSim is also
fully compatible with the Daisen GPU visualization framework [36],
allowing users to easily understand the GPU’s performance issues
identified by the simulator. We extensively validate NaviSim against
an AMD RX 5500 XT GPU (RDNA architecture). The average sim-
ulation error on execution time, as compared to real hardware, is
less than 10% across a suite of 10 workloads.

Given that we have a validated simulator, we then use NaviSim
to analyze the effect of different RDNA features on a GPU’s overall
performance, attempting to make sense of the design decisions
behind the design of the RDNA architecture. We carry out a number
of experiments to isolate each RDNA feature and evaluate its impact.
These experiments also serve as case studies, demonstrating the
usability and flexibility of NaviSim.

In summary, this paper makes the following contributions:

• We present NaviSim, a highly configurable and accurate GPU
simulator that models the AMD RDNA architecture.

• Wepresent validation results, comparingNaviSim simulation
results and hardware execution on two GPUs (AMD RX 5500
XT and AMD Radeon Pro W6800).

• Weprovide case studies demonstrating the utility of NaviSim,
evaluating new architectural and design features targeting
the RDNA GPU.

334

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

2 BACKGROUND
The AMD GCN architecture [2] has been the reference specifica-
tion for AMD GPU design over the past decade. However, in recent
years, the AMD GCN architecture faced critical scalability chal-
lenges, as it struggled to fully exploit the ever-increasing number of
transistors provided by today’s photolithography technology [8]. In
response, AMD developed a new family of RDNA architectures [3],
introducing a major architectural overhaul as compared to the GCN
architecture. In this section, we provide a brief overview of the GCN
architecture and discuss the changes introduced in the RDNA ar-
chitecture. For more detailed specifications, readers can refer to the
AMD GCN Whitepaper [2] and RDNA Whitepaper [3].

GPUProgrammingModel. Both AMDGCN and RDNAGPUs
can execute GPU programs implemented using the same GPU pro-
grammingmodel. Here, we introduce the programmingmodel using
OpenCL terminologies, though other programming models (e.g.,
CUDA or HIP) use similar semantics.

A GPU program typically can be separated into the GPU portion
and the CPU portion. The portion of the program that executes on
the GPU is called a kernel. The portion of the program that runs
on the CPU (i.e., the host program) launches kernels using vendor-
provided runtime APIs. A kernel consists of a number of work-
items. Work-items are similar to CPU threads; they execute the
same program concurrently, but work on different data. Work-items
can be grouped into work-groups. The work-items in a work-group
(typically 32–1024 work-items) can be synchronized using barriers
and can share a small, but fast, local data share (LDS) memory.

On a GPU, a subset of work-items (typically 32–64) in a work-
group are organized into a wavefront. AMDGPUs issue instructions
at a wavefront granularity—every time the instruction scheduler
issues one instruction, the ALU repeats the operation for each work-
item within the wavefront. Due to the use of this form of wavefront-
level scheduling, all the work-items in a wavefront are always
synchronized. This mechanism is also known as lock-step execution.
With lock-step execution, all the work-items in a wavefront need to
execute an instruction, even if only part of the wavefront needs it
when the execution paths of different work-items diverge. Thread
divergence negatively impacts GPU performance, as only part of
the work-item execution will take effect.

GCN Architecture. The GCN architecture (see Figure 3(a))
adopts a highly modular design that incorporates a Command Pro-
cessor, Shader Arrays (including Compute Units and L1 caches),
an on-chip network connecting the core-side L1 caches and the
memory-side L2 caches, and DRAM. The Command Processor (CP)
is responsible for handling all communications with the CPU, in-
cluding memory copying and kernel launch. The CP is also respon-
sible for breaking down kernels into work-groups and wavefronts,
as well as dispatching the work-groups and wavefronts to the Com-
pute Units (CUs). In the GCN3 architecture, the CP can dispatch
one wavefront per cycle. However, given the fact that GPU de-
vices can hold an ever-increasing number of CUs, especially when
moving to 7nm technology, the CP dispatching speed can be a per-
formance bottleneck. While other simulators (e.g., Multi2Sim [38],
GPGPUSim [7]) do not typically model the communication between
the CP and the CU, we carefully model the dispatching process, as

we have observed that the work-group dispatching can be a major
performance bottleneck.

A CU (see Figure 3(c)) on a GPU is similar to a CPU core. The CU
is responsible for instruction execution and data processing. Each
CU includes a scheduler that can fetch and issue instructions for up
to 40 wavefronts. During each cycle, the scheduler can decode up
to 5 different instructions and issue these 5 instructions to different
execution units, including a branch unit (not shown in the figure
for clarity), a scalar unit (responsible for executing instructions that
manipulate data shared by work-items in a wavefront), a Local Data
Share (LDS) unit, a vector memory unit, and four Single-Instruction
Multiple-Data (SIMD) units. Each SIMD unit is responsible for ex-
ecuting vectorized floating-point instructions for 10 out of the 40
wavefronts managed by the scheduler. Each SIMD unit is equipped
with 16 single-precision Arithmetic Logic Units (ALUs). Therefore,
each 64-work-item wavefront takes 4 cycles to finish the execution
of one instruction. Since CU behavior will determine instruction
throughput and needs to handle data dependencies, modeling and
analyzing the behavior of the CU accurately is essential to accu-
rately modeling the overall GPU performance.

The GCN architecture has a two-level cache hierarchy. The L1
cache can be divided into the L1 scalar cache (mainly used for stor-
ing constant data, such as kernel arguments and pointers), an L1
instruction cache, and an L1 vector cache (a write-through cache
that stores most of the data required by a CU). Each CU has a ded-
icated L1 vector cache. CUs in a Shader Array (typically 4 CUs)
share an L1 scalar cache and an L1 instruction cache. All the L1
caches fetch data from L2 caches (L2s are write-back caches). Each
L2 cache interfaces to a DRAM controller (typically implemented
in HBM or GDDR technology). The L2 caches and the DRAM con-
trollers are banked, allowing them to service a part of the address
space. Since many GPU applications are memory bound, careful
modeling of the memory system is critical and a goal of NaviSim.

The L1 caches and the L2 caches are connected with a crossbar.
The crossbar design can provide low-latency and high-throughput
communication channels for the L1 and the L2 caches. However, as
the 7nm technology enables a larger number of CUs, the crossbar
design struggles to scale. Therefore, future architectures will require
design changes targeting the memory hierarchy in order to enhance
the scalability of the GPUs.

RDNAArchitecture. AMD’s RDNA architecture (see Figure 3(b))
is designed to replace the GCN architecture for better scalability.
The RDNA architecture makes changes to many elements of the
GPU design, including the programming model, the CU, and the
memory hierarchy.

One of the most noteworthy changes is that the RDNA archi-
tecture reduces the size of the wavefront from 64 work-items to
32 work-items. By cutting the wavefront size in half, the CUs are
expected to better cope with a higher degree of thread divergence
in modern workloads. Additionally, as the wavefront size is smaller,
fewer memory transactions are expected to be generated by one
load/store instruction (although the total number of transactions
generated by the kernel is likely to remain unchanged), potentially
reducing memory access latencies (as demonstrated in the pointer
chasing microbenchmark results in Figure 1). These benefits should
help to improve ALU utilization. This paper will further evaluate
the effects of narrower wavefronts in Section 6.

335

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

... ...L2 Cache

DRAM

(a) The Architecture of GCN3 GPUs.

Command Processor

Instruction Mem

Scalar Mem

Shader Array

Compute Unit

L1V Compute Unit

Compute Unit

Compute UnitL1V

L1V

L1V

L1S

L1I Instruction Mem

Scalar Mem

Shader Array

Compute Unit

L1VCompute Unit

Compute Unit

Compute Unit L1V

L1V

L1V

L1S

L1I

InterconnectInterconnect

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L1I L1VL1S

Operand Gathering

(c) The Architecture of a GCN3 Compute Unit.

SIMD
-16

In
st

 F
et

ch

10 Wave
Inst Buf

10 Wave
Inst Buf

10 Wave
Inst Buf

10 Wave
Inst Buf

De
co

de
 &

 Is
su

e

Vec.
Mem

Register
Write Back

... ...L2 Cache

DRAM

(b) The Architecture of RDNA GPUs.

Command Processor

Shader Array

L0V

Dual Compute Unit

L0VL0S L0I

L0V

Dual Compute Unit

L0VL0S L0I

3-5 DCUs in Total

L1
 C

ac
he

InterconnectInterconnect

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

To Other CUs

Shader Array

L0V

Dual Compute Unit

L0VL0S L0I

L0V

Dual Compute Unit

L0VL0S L0I

3-5 DCUs in Total

L1
 C

ac
he

L0I L0VL0S

VReg

(d) The Architecture of an RDNA Dual Compute Unit.

Is
su

e 20
Wave
Inst
Buf Fe

tc
h

LD
S

Un
it

SRegSALU

Fe
tc

h 20
Wave
Inst
Buf Is

su
e

Is
su

e 20
Wave
Inst
Buf Fe

tc
h

Fe
tc

h 20
Wave
Inst
Buf Is

su
e

SIMD-32

 D-32

VRegSRegSALU

VReg SReg SALU
Operand Gathering

SIMD-32

VReg SReg SALU

Operand Gathering
SIMD-32

Vec.
Mem

Vec.
Mem

L0V

Global
Memory
Access

Operand Gathering

Operand Gathering

Global
Memory
Access

VReg SReg SALU
LDS
Unit

SIMD
-16

SIMD
-16

SIMD
-16

Figure 3: A Comparison between the GCN Architecture [2] and the RDNA Architecture [3].

A second major change in RDNA GPUs is the introduction of
Dual Compute Units (DCUs, see Figure 3(d)), replacing the GCN
CUs. A DCU contains 4 schedulers. Increasing the number of sched-
ulers from 1 to 4 significantly increases the instruction issue rate.
Rather than dispatching instructions across 4 SIMD units, as in the
integrated GCN CU, each RDNA scheduler in a DCU dispatches
instructions to 1 SIMD unit. One SIMD unit in a DCU has 32 single-
precision ALUs, doubling the number of ALUs in a CU. Working
together with the narrower 32-work-item wavefronts, each SIMD
unit can finish executing one instruction in a single cycle, as com-
pared to 4 cycles in a CU.

Third, the RDNA architecture redefines the cache hierarchy from
a 2-layer structure to a 3-layer structure. The caches that are directly
connected to the DCUs are renamed as L0 caches (versus L1 caches).
Each read-only L0 instruction cache and read-only L0 scalar cache
are no longer shared by multiple CUs, but dedicated to a DCU. Each
DCU connects with 2 separate write-through L0 vector caches; a
group of two schedulers and two SIMD units can use one L0 vector
cache. Since now we have two L0 caches connected to one DCU,
updating the data in one cache may render the data in the other
L0 cache stale. This may cause coherence issues within a DCU and
requires explicit cache invalidation instructions (as provided in the
RDNA ISA, but not in the GCN ISA).

Additionally, an intermediate level of caching (i.e., the new write-
evict L1 cache) is inserted. The L1 cache serves a group of DCUs

(typically 4-5) in a Shader Array, and sits between the L0 and L2
caches. The L1 caches can reduce the number of requests arriving
at the L2 caches (in the case of L1 hits) and reduce the amount of
data that is transmitted across the chip (from L2 to L0), thereby in-
creasing performance and lowering the power consumption caused
by cross-chip transmissions. Finally, the cache line size of the L0
vector caches, L1 caches, and the L2 caches is doubled from 64B
to 128B, so that a cache line can deliver unique single-precision
numbers for all 32 work-items in a wavefront (4𝐵 × 32 = 128𝐵).

The Akita Simulation Engine. The Akita Simulation En-
gine [33] is a computer architecture simulator engine that is im-
plemented in the Go programming language [37]. The Akita Sim-
ulation Engine has been used effectively in the MGPUSim sim-
ulator [33]. We selected the Akita Simulation Engine because of
its high flexibility and optimized multi-threaded simulation per-
formance. While we reuse a few components (e.g., the L0 and L2
caches) from MGPUSim, most of the NaviSim simulator is designed
and implemented independently using the Akita Simulation Engine
(e.g., the RDNA instruction emulator, the new L1 write-evict cache,
and DRAM controllers).

3 NAVISIM
In this section, we present NaviSim, a novel GPU simulator that
models the AMD RDNA architecture. NaviSim is open source (link

336

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

is hidden for double-blind review) under the terms of the MIT
license [17].

RDNA ISA Emulation. NaviSim is an execution-driven simu-
lator. The simulator recreates the execution results of GPU instruc-
tions during simulation with the help of an instruction emulator for
the RDNA ISA. NaviSim can use the MGPUSim’s GCN3 instruction
emulator as a library. Since the instruction emulator shares the
same interface with the GCN3 instruction emulator, this allows
users to swap the instruction emulator being used. The virtual dri-
ver (a set of APIs that connect the Go-coded host programs and
the simulated GPUs) of NaviSim allows users to configure which
ISA to emulate and load the corresponding GCN3/RDNA kernel
binaries.

NaviSim runs in either emulation mode or timing simulation
mode. Instruction emulation mode can recreate execution results,
without evaluating detailed timing information for the instruction
pipelines, caches, andDRAMcontrollers. As a result, emulation runs
much faster than timing simulation. No matter which mode is used,
the emulation results of the benchmarks shown in Table 4 exactly
match the output of the applications run on real GPU hardware.

Currently, NaviSim supports both OpenCL [20] kernels and ker-
nels written in the HIP programming language [5]. OpenCL kernels
can be compiled by the AMD official clang-ocl compiler, which
is a standard part of the AMD Radeon Open Compute (ROCm)
platform [35]. HIP kernels can be compiled with the hipcc com-
piler, which also ships with the AMD ROCm platform. By using
the –genco argument, hipcc ignores the host program and only
generates kernel binaries. NaviSim supports loading kernel binaries
compiled by either compiler and emulates the execution of the GPU
kernels using actual input data sets.

Wavefront Dispatching. We carefully model the Command
Processor to capture the wavefront dispatching process. The mod-
eled Command Processor maintains resource masks that keep track
of which resources are occupied in each CU/DCU, including the
wavefront slot (wavefront-level resources, such as instruction buffers
and the program counter register), scalar registers, vector registers,
and LDS memory. The resource masks ensure that no hardware
resources are oversubscribed. Since we mask the resources either
at the register level (for vector and scalar registers) or at the byte
level (for the LDS), we can also model register/LDS fragmentation
issues in the CUs/DCUs [29].

NaviSim can also support modeling concurrent kernel execu-
tion [43], as the Command Processor has multiple wavefront dis-
patchers. Each wavefront dispatcher will manage the progress of
the currently executing kernel’s execution and dispatch a new
wavefront when resources free up in the CUs/DCUs. By default,
each Command Processor provides 8 dispatchers (the number is
configurable), and hence, we allow up to 8 kernels to execute con-
currently. The wavefront dispatchers compete for the resources and
have equal opportunities to dispatch wavefronts to the CUs/DCUs,
ensuring the fairness of the concurrently executing kernels.

DCUmodeling. In the RDNA architecture, a dual compute unit
replaces the old compute unit. We develop a detailed architectural
model of the DCU, which governs how instructions are executed in
the simulator. Since the accurate modeling of the DCU is essential
for simulation accuracy, NaviSim carefully models the pipeline
(see Figure 4) with a multi-stage, multi-issue structure.

Scheduler

Fe
tc

h
A

rb
ite

r

... ...

20 Wavefront
Inst Buffers

in Total

... ...

Is
su

e
A

rb
ite

r

From
L0 Inst

Decode

Branch

Vector
Mem

Scalar

32-Width
SIMD

LDS

Read Exec Write

...

50 Stages

...

To L0 Vector

Figure 4: The instruction pipeline model in a NaviSim DCU.
Each DCU has four copies of the structure shown.

The pipeline starts with the instruction fetch arbiter, which at-
tempts to fetch instructions for a wavefront that has vacant space
in instruction buffers. When multiple wavefronts have space avail-
able, the wavefront that received instructions furthest in the past
is selected. The issue arbiter monitors the instruction buffers and
selects wavefronts that have instructions ready that they can be
issued. The arbiter can issue at most 5 instructions per cycle, one
instruction to each instruction pipeline.

The Branch, Scalar and LDS pipelines use a fairly regular 6-stage
pipeline that includes fetch, issue, decode, read, execute, and write
stages. Note that the decode stage happens after the issue stage.
This is because the issue arbiter can easily determine the type of
each instruction by checking a few encoded bits in the instruction.
The branch instruction has no decode stage, as the instructions
are very simple. This is in line with publicly available documenta-
tion provided by AMD for the DCU architecture. The SIMD unit,
which provides most of the computing power of the DCU, also
uses a 6-stage pipeline design, but is capable of reading, executing,
and writing 32 instructions in parallel. The vector memory has the
most complex pipeline structure, adopting a 50-stage pipeline. This
may sound unusual, but the model matches our microbenchmark-
ing results. Since we are not aware of the function of each of the
pipeline stages, we do not model the behavior of each stage, but
only associate a latency value with each instruction.

Memory Hierarchy. We model the 3-level cache hierarchy in
RDNA GPUs. L0 scalar and L0 instruction caches are read-only, L0
vector caches use a write-through policy, L1 caches use a write-
evict policy, and L2 caches use a write-back policy. We also connect
DRAMSim3 [27] to model GDDR5, GDDR5X, GDDR6, GDDR6X,
HBM, and HBM2 DRAM controllers. We allow users to configure
any number of caches in the hierarchy and allow any type of combi-
nations of the cache policies. Additionally, all of the parameters of
a cache (e.g., set count, way associativity, cache line size, directory
latency, storage access latency) can be fully configured by users.

Multi-GPUand InterconnectModeling. Similar toMGPUsim,
NaviSim natively supports multi-GPU simulation. The number of
GPUs can be easily configured with command line arguments (e.g.,
–gpus=1,2,3,4). There is no limitation on the number of GPUs
under simulation, as long as the host machine has enough memory.
Additionally, NaviSim natively supports advanced multi-GPU fea-
tures, such as unified multi-GPU execution [23], GPU-GPU RDMA,
and GPU-GPU page migration [13].

User Interface. NaviSim adopts a similar user interface as used
in MGPUSim. To run benchmarks, the user can compile either HIP

337

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

Table 1: The configurations of validation platforms.

Parameter Platform1 Platform2

GPU Radeon RX 5500 XT Radeon Pro W6800
GPU Core Freq 1845 MHz 2320 MHz
DCU Count 11 30
GPU Memory GDDR6 GDDR6
Mem Bandwidth 224.0GB/s 512.0GB/s

CPU AMD Ryzen
Threadripper 2950X AMD EPYC 7302P

OS Linux Ubuntu 18.04 Linux Ubuntu 20.04
GPU Driver AMD ROCm 5.0 AMD ROCm 5.1

or OpenCL kernels using the official AMD compiler. A host program
written in Go is required to invoke a set of APIs to allocate/copy
memory and launch kernels. The host APIs are compatible withMG-
PUSim and are similar to common GPU programming frameworks
(e.g., CUDA, OpenCL). Users can specify either emulation mode
(value emulation only) or timing mode (detailed timing simulation
that involves instruction pipeline, caches, and memory controllers)
as a command line option. Meanwhile, NaviSim uses a few configu-
ration files that are written in Go to define hardware configuration.
Users can easily configure the hardware under simulation by modi-
fying parameters and component connections in the configuration
code. We use code for configuration because users can easily debug
the configuration logic with debuggers.

Simulator Output. NaviSim can generate a wide range of out-
put data to facilitate performance analysis. For high-level metrics,
NaviSim outputs the total execution time (kernel time + memory
copy time), total kernel execution time, and the per-GPU kernel
execution times. For performance metrics related to individual com-
ponents, NaviSim reports instruction counts, average latency spent
accessing each level of cache, transaction counts for each cache (in-
cluding read misses, read hits, read MSHR hits, write misses, write
hits, and write MSHR hits), TLB transaction counts (hits, misses,
MSHR hits), DRAM transaction counts and read/write sizes, and
transaction counts for the GPU RDMA engines.

Additionally, NaviSim can generate low-level detailed traces,
including instruction traces (complete with the register states af-
ter executing each instruction) and memory traces (at each level
of cache and the DRAM, including the transaction start and end
times). NaviSim ships with a graphical user interface (GUI) tool
that allows users to navigate the instruction traces and inspect how
the registers are updated after each instruction execution. This tool
is similar to popular GUI-based MIPS emulators [28] and can be
used for educational purposes. Finally, NaviSim can produce traces
using the Daisen format [36], so that users can use a visualization
tool to inspect the detailed behavior of each component.

4 METHODOLOGY
The studies to be performed in this paper include two parts. First,
we calibrate and validate the accuracy of the simulator with a set of
microbenchmarks and full benchmarks. With a validated simulator,
we then conduct additional experiments to evaluate the RDNA
architecture design.

Table 2: Simulator configuration.

Param P1 P2 P3*

Base Model RX5500XT R9 Nano -
CU/DCU 11(DCU) 64(CU) 32(DCU)
Core Freq 1845MHz 1000MHz 1000MHz
TFLOPS 5.20 8.19 8.19

L0V $@ 16KB 16KB 16KB
L0V $ Assoc. 4-way 4-way 4-way
L0 Inst $@ 32KB 32KB 32KB
L0 Scalar $@ 16KB 16KB 16KB
L0I/L0S $ Org. Per DCU 4-CU shared Per DCU
L1 $ 128KB - 128KB
L1 $ Assoc. 16-way - 16-way
L2 $ 1MB 2MB 2MB
L2 $ Assoc. 16-way 16-way 16-way

DRAM Tech GDDR6 HBM HBM
DRAM Size 4GB 4GB 4GB
Mem Freq 1750MHz 500MHz 500MHz
Mem Bus 128 bit 4096 bit 4096 bit
Mem BW 224 GB/s 512 GB/s 512 GB/s
* P3 is not an off-the-shelf GPU, but it is chosen specifically to
analyze the performance impact of individual RDNA features.

@ We use L0 to name the caches that are directly connected to a
CU/DCU. In P2, L0 caches connects to L2 caches directly.

Platforms with GPU Devices. We use an RX 5500 XT GPU
and Radeon Pro W6800 (see Table 1) to validate our NaviSim GPU
Model. Our platforms run the ROCm 5.0/5.1 software stacks on
Linux Ubuntu 18.04/20.04 servers.

Simulator Configuration. We set the baseline GPU configu-
ration using publicly available information and calibrate our results
using microbenchmarks. The default configuration of NaviSim for
the RX 5500 XT GPUs is recorded as P1 in Table 2.

After validating the NaviSim GPU model, we use the model to
conduct a series of use-case experiments to evaluate the perfor-
mance impact of microarchitectural design features in the RDNA
architecture. We compare our simulation results with the default
configuration of MGPUSim for the R9 Nano GPUs (denoted as P2 in
Table 2). Since the AMD RX 5500 XT and the R9 Nano GPUs belong
to two very different markets, comparing them directly would not
provide us with a lot of new insights. Therefore, we have config-
ured a GPU as P3 in Table 2. We chose these GPU configurations so
that they would have a similar theoretical computing throughput
(represented by TFLOPS) and a comparable memory hierarchy. In
the experiments, rather than directly comparing P2 and P3, we
gradually add features from P2 to build P3, so that we can evaluate
the effect of each feature.

Microbenchmarks. We use microbenchmarks to evaluate key
parameters of each GPU in order to evaluate the accuracy of Navi-
Sim.We design 7 microbenchmarks (see Table 3) to evaluate individ-
ual GPU subsystems, such as the wavefront dispatcher, instruction
pipelines, and memory hierarchy. At a high level, we repeat one

338

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

Table 3: The list of microbenchmarks used to calibrate NaviSim.

Microbenchmark Parameter Description

empty_kernel Work-Group
DispatchingSpeed

Executes a kernel, while varying the kernel and work-group sizes. We leave
the kernel blank so that we can measure work-group dispatching latency.

empty_kernel_multi Kernel Launching
Overhead

Launches a given number of empty kernels. The kernel used is same as the one
used in empty_kernel microbenchmark.

single_thread_loop Instruction Pipeline
Depth

Executes a kernel with only one thread. The kernel has a main loop, and each
iteration of the loop executes a single single-precision floating point instruction.

multi_thread_loop Instruction Pipeline
Throughput

Executes the same kernel as single_thread_loop, but with a large number of
threads that are large enough to fully occupy the GPU execution resources.

pointer_chasing_random Cache Sizes and
Cache Latencies

Runs the classic pointer chasing microbenchmark [41]. The pointers stored in
the buffers are randomized. We only run 1 thread in this kernel.

pointer_chasing_linear Cache Size and
Cache Latencies

The same kernel as pointer_chasing_random, except that the pointers in the
buffers always point to the next pointer (the last pointer points to the first one.

memory_copy Bandwidth of
Caches and DRAMs

Copies data from one buffer to another, using a given number of work-groups.
When there are only 1-2 work-groups, we evaluate the L0 cache bandwidth.
When there are enough work-groups to fill the whole GPU, this microbench-
mark can also test the DRAM bandwidth.

operation thousands to millions of times to stress individual com-
ponents of the GPU. Then we statistically analyze the latency of an
operation or evaluate the throughput of a specific GPU component.

As an example of this process, we use the pointer-chasing bench-
mark to evaluate cache sizes and latencies. The host program first
creates a region of memory (i.e., the pointer chasing region) of a
given size. Next, the host program divides the region into 8-byte
cells and fills each cell with an address that points to the next cell,
located at a randomly assigned address within the region. There
is no repetition in the addresses stored in the region so that the
whole region can be traversed multiple times. The GPU will use a
single thread to access the cells many times (at least several times
more than the number of cells), following the addresses stored in
the region. We eventually divide the kernel execution time by the
number of accesses to calculate the average access latency.

Full Benchmarks. We also exploit a list of full GPU bench-
marks (see Table 4) from awide range of benchmark suites including
AMDAPPSDK [31], SHOC [10], HeteroMark [34], PolyBench [30],
and DNNMark [11]. We use these benchmarks as a set of work-
loads that cover a wide range of applications to comprise different
arithmetic intensities, memory access patterns, and communication
patterns. We start with the original OpenCL kernel implementa-
tions from the benchmark suite and compile the kernels with the
original AMD ROCm compiler (applying default compiler optimiza-
tions). We also write host programs in Go, allowing the simulators
to call the kernels. We ensure our host programs are equivalent to
the original host program from the benchmark suite. For validation
experiments, we vary the problem sizes of the benchmarks to make
sure that NaviSim can recreate scaling trends. For performance
evaluation, we use large problem sizes that are sufficient to stress
the whole GPU.

Running Benchmarks. We run OpenCL implementations of
the benchmarks, while varying the input size. We use kernel ex-
ecution time as the performance metric and report the average

Table 4: Full Benchmarks.

Abbr. Suite Workload

ATAX PolyBench Matrix Transpose and Vector Multi-
plication

BICG PolyBench BiCGStab Linear Solver [39]
BS AMDAPPSDK Bitonic Sort
FIR HeteroMark Finite Impulse Response Filter
FLW AMDAPPSDK Floyd-Warshall Algorithm
FWT AMDAPPSDK Fast Walsh Transform
KM HeteroMark KMeans Clustering
MT AMDAPPSDK Matrix Transpose
ReLU DNNMark Rectified Linear Unit
SPMV SHOC SparseMatrix-Vector Multiplication

execution time over 10 runs. The times obtained on the real GPU
are recorded using OpenCL events [20].

We use kernel execution time as the primary metric to evaluate
the accuracy of NaviSim, for two reasons. First, execution time is
the most commonly reported metric when considering architectural
tradeoffs. Second, the kernel execution time is a high-level metric
that summarizes the impact of all features being simulated; we can
only achieve a low error in execution time if the fidelity of all the
components being modeled in the simulator is high.

5 SIMULATOR VALIDATION
Any computer architecture simulator requires a rigorous validation
process before it can serve as a baseline for future research. In this
section, we report on our validation efforts for NaviSim, comparing
simulation results against GPU hardware execution.

First, we verify the correctness (in terms of application outputs)
of NaviSim in both emulation mode and timing simulation mode.
To this aim, we compare every simulator-generated application
output with its corresponding actual hardware execution output.

339

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

32 128 512 2K 8K 32K 128K 512K 2M 8M 32M
Pointer Chasing Region Size (Byte)

60
100

200

400

800

Ti
m

e
Pe

r A
cc

es
s (

ns
) NaviSim RX 5500 XT GPU

Figure 5: Comparison of the Pointer Chasing microbench-
mark between NaviSim and the RX 5500 XT hardware.

We observe that the results match exactly for all applications. The
matching results of NaviSim when running in the emulation mode
suggests that NaviSim faithfully emulates the RDNA instructions.
Additionally, different from other simulators [7, 38], where the in-
struction emulation and time modeling are independent of each
other, NaviSim models data values in every request and every sim-
ulated clock cycle. Our simulation approach exposes mistakes in
the communication modeling, many times captured as an error
in the simulator-generated execution output. Being able to match
the results between the timing simulation results and hardware
measurements suggests that we faithfully model communication be-
tween components. For example, we capture and accurately model
all flushes of cache lines, where errors may never be detected by
simulators that separate the emulation and timing modeling logic.
Blending the instruction and emulation code provides an extra
layer of confidence that the components and the communication
are modeled accurately.

Second, for validating the timingmodel, we use bothmicrobench-
marks and full application workloads to validate the accuracy. We
configure our simulation using the publicly available parameters of
the AMD RX 5500 XT GPU (see Table 1). We then use microbench-
marks (see Table 3) to help us reverse-engineer a wide range of
undocumented parameters, such as the work-group dispatch over-
head, instruction pipeline depth, cache latency at each level, and
DRAM bandwidth and latency. A good example of our strategy is
that we use a pointer chasing microbenchmark to figure out the
size and latency of each level of the cache. As we can see from the
representative results of running the pointer chasing microbench-
mark (see Figure 5), NaviSim is able to calibrate the parameters
with extremely high accuracy. The calibration results of other mi-
crobenchmarks follow similar trends as the pointer chasing results.

With the fully calibrated parameters, we evaluate the accuracy
of the simulator by validating it against AMD RX 5500 XT hard-
ware using full benchmarks (Table 4). Figure 6 shows the simulator
accuracy (left y-axis) as well as the relative error at each data point
by the bar plot (right y-axis) for a range of problem sizes depending
upon each benchmark. We observe that for some benchmarks the
relative error increases as the problem size increases (e.g., ReLU),
and for some other benchmarks the relative error decreases as
the problem size increases (e.g., BS, SPMV). For each benchmark,
in parenthesis, we also report the average error. As we can see,
the error in terms of modeled execution time, averaged across all
benchmarks, is just 9.75%. Additionally, we not only model the

execution with high fidelity, we clearly capture the patterns and the
nuances of the GPU architecture. For example, in the FIR and ReLU
benchmarks, we successfully capture the transition in the workload
when the execution time starts to increase. This suggests that we
properly model any limitations associated with the total amount of
computing resources available on a GPU. As another example, we
observe steps in some benchmarks (e.g., BS before 32K, FWT after
16K and 32K, KM between 2K and 3K). As these steps are caused by
complex interactions between the instruction scheduler, cache hier-
archy, and memory transaction handling, being able to model these
steps demonstrates that NaviSim can model the subtle features in
the RDNA architecture. We have also validated NaviSim against a
second GPU model, the AMD Radeon Pro W6800 GPU (see Table 1),
which is an RDNA2-based GPU. The average difference between
simulated and hardware measured execution time is 10.08%. Our
validation results, which are shown in Figure 7, demonstrate that
NaviSim can capture the changes of microarchitectures in RDNA
across different devices with high fidelity.

We are also aware of discrepancies in a few benchmarks, such as
FW and KM. In general, these benchmarks are either short-running
benchmarks (FW) or workloads that involve a large number of
kernel launches (KM). The discrepancies suggest that NaviSim has
difficulties inmodelingGPU behaviors at the kernel launch phase. In
general, we believe this is not a big problem since the simulators are
likely to be used to model large problem sizes, and the differences
observed in the kernel launch overhead should not impact the
overall accuracy by much. We leave more detailed modeling of the
kernel launch behavior as future work.

We also analyze the memory footprint and performance of Navi-
Sim simulation. In the FIR benchmark (with a 4M problem size, as
shown in Figure 6), we use 823MB ofmemory, which fits in themem-
ory of most modern computers. In terms of simulation performance,
on an Apple M1 Mac Mini, we achieve 43.5 KIPS and 89.5 KIPS
in serial and parallel modes (NaviSim is multi-threaded), respec-
tively. This performance is much faster than MGPUSim, which
reported 27 KIPS parallel execution performance in their original
paper. Thus, the memory consumption and performance of NaviSim
are quite reasonable.

6 CASE STUDIES: UNDERSTANDING THE
RDNA ARCHITECTURE FEATURES

With a carefully validated simulator model, we next use NaviSim
to perform a set of experiments to analyze the impact of RDNA
features on application performance. In particular, we attempt to
answer the following questions:

(1) How does the ISA impact the overall performance and how
does the DCU architecture impact performance? How is
the instruction execution pipeline impacted by executing a
different ISA?

(2) What is the effect of the newly added L1 cache?
(3) What percent of the overall performance increase can be

attributed to changes in frequency (increased from 1 GHz to
1.845 GHz)?

While we study the impact of the features on the overall perfor-
mance, we also use this study to demonstrate the utility of NaviSim.
We showcase the flexibility and the configurability of NaviSim.

340

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

64 512 1K 1.5K 2K
0

100

200

300

Ti
m

e(
us

) ATAX (7.9%)

Simulation Native Execution Relative Error

64 512 1K 1.5K 2K
0

100

200

300 BICG (5.9%)

4K 16K 32K 48K 64K
0

100
200
300
400

BS (3.9%)
64 1K 16K 256K

0

20

40

60
FIR (12.9%)

16 64 128 192 256
0
2
4
6
8

Ti
m

e(
us

) FW (19.0%)

4K 16K 32K 48K 64K
0

20

40

60

FWT (5.5%)
256 1K 2K 3K 4K

0
30
60
90

120

KM (11.5%)
256 1K 1.5K 2K

0

100

200

300
MT (13.5%)

64 512 8K 128K 1M
0

20

40

60

Ti
m

e(
us

) ReLU (3.1%)

64 512 1K 1.5K
0

25
50
75

100 SPMV (9.8%)

0
3
6
9
12

0
4
8
12
16

0

4

8

12

16

0
4
8
12
16

Re
la

tiv
e

Er
ro

r (
%

)

0
3
6
9
12

0
2
4
6
8

0
8
16
24
32

Re
la

tiv
e

Er
ro

r (
%

)

0

10

20

30

40

0
8
16
24
32

0
4
8
12
16

Figure 6: Simulator validation against the AMDRX 5500 XTGPU. The x-axis plots the problem size and the two y-axes plot the
kernel execution time and relative error. The numbers in the parentheses represent the average difference between NaviSim
simulation and the hardware execution for each application.

Impact of changes in the ISA and the introduction of the
DCU. In the first set of experiments, we focus on question (1). We
use the P2 configuration (see Table 2, denoted as CU+GFX803 in
Figure 8) as the baseline. We have configurations where we either
change the ISA to GFX1010 (CU+GFX1010) or change the core to
DCU (DCU+GFX803, where the number of DCUs is half of the
number in the CU, thus providing a fair comparison of similar com-
puting capabilities). We also provide a configuration that changes
both the core and the ISA (DCU+GFX1010).

At a high level, our results (see Figure 8) suggest that many
benchmarks (e.g., BS, PR, ReLU) achieve the same performance for
all four cases. This is understandable, as the memory system and
the overall computing capabilities remain the same. However, we
notice major performance differences in ATAX, BICG, FIR, and FLW
benchmarks. These changes are caused by the differences in the
ISA and the CU/DCU organization.

ATAX and BICG reveal how the CU/DCU organizer impacts the
performance of benchmarks that are sensitive to memory band-
width and latency. ATAX and BICG are workloads with limited
parallelism and strong inter-work-item dependencies. Therefore,
ATAX and BICG have large work-group sizes and a small number of
work-groups in each kernel. In the CU configurations, the number
of blocks cannot utilize all the CUs in the GPU and hence, cannot
fully utilize the bandwidth between the L0 caches and the CUs.
On the contrary, the number of blocks in the ATAX and BICG can
fully utilize the DCUs on the third and fourth configurations, since
the count of DCUs is halved. As each DCU is connected with two

vector L0 caches, the bandwidth between the core and the L0 caches
is effectively doubled, causing an increase in the performance by
about 2×.

The most critical difference in the ISAs is the wavefront size
difference. Kernels compiled to the GFX1010 ISA always use a wave-
front size of 32, which is not a perfect match for the CU architecture.
When running wavefronts on CUs, because the CU scheduler can
only issue 1 instruction to a SIMD unit every 4 cycles, the CU needs
to spend 4 cycles to execute 1 instruction. We observe underutiliza-
tion of the ALUs in ATAX, BICG, FIR, and FLW benchmarks when
we match the GFX1010 ISA with the CU microarchitecture. Other
benchmarks do not observe this issue because they are bound by
memory bandwidth and are not sensitive to ALU utilization. In the
FIR benchmark, we also see that matching the GFX803 benchmark
and the DCU microarchitecture causes the SIMD unit not to be able
to catch up with the instruction issuing speed, leading to significant
pipeline stalling and even more slowdown. The problem does not
exist when the DCU microarchitecture and GFX1010 ISA are used
together, suggesting that the ISA and the microarchitecture are
co-designed to achieve the best performance.

Impact of the L1 cache. Next, we focus on question (2) and
try to understand the effect of the new L1 cache. We use the P3
configuration (see Table 1, denoted as P3 w/ L1 in Figure 9) as the
baseline, and compare the performance with a configuration that
removes the L1 cache (P3 w/o L1). The results are shown in Figure 9.

Similar to the earlier experiments, as we only modify a small
part of the configuration, most benchmarks that are bounded by

341

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

64 512 1K 1.5K 2K
0

100

200

300

Ti
m

e(
us

) ATAX (9.3%)

Simulation Native Execution Relative Error

64 512 1K 1.5K 2K
0

100

200

300 BICG (11.4%)

4K 16K 32K 48K 64K
0

400

800

1200

BS (3.3%)
64 1K 16K 256K

0

5

10

15

20
FIR (11.0%)

16 64 128 192 256
0

4

8

Ti
m

e(
us

)

FW (8.9%)
4K 16K 32K 48K 64K

0

30

60

90

FWT (4.2%)
256 1K 2K 3K 4K

0

40

80

120

160

KM (7.0%)
256 1K 1.5K 2K

0

20

40

60
MT (14.6%)

64 512 8K 128K 1M
0

10

20

30

Ti
m

e(
us

) ReLU (6.3%)

64 512 1K 1.5K
0

100

200

300
SPMV (24.7%)

0

10

20

30

0

40

80

120

0

2

4

6

8

0

10

20

30

Re
la

tiv
e

Er
ro

r (
%

)

0
8
16
24
32

0

2

4

6

8

0
4
8
12
16

0

10

20

30

40

Re
la

tiv
e

Er
ro

r (
%

)

0

5

10

15

0
20

60

100

Figure 7: Simulator validation against the AMD Radeon ProW6800 GPU. The x-axis plots the problem size and the two y-axes
plot the kernel execution time and relative error. The numbers in the parentheses represent the average difference between
NaviSim simulation and the hardware execution for each application.

ATAX BICG BS FIR FLW FWT KM MT PR ReLUSPMV
Benchmark

0.5
1.0
1.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

CU+GFX803
CU+GFX1010

DCU+GFX803
DCU+GFX1010

Figure 8: The effect of changing from CUs to DCUs and the
ISA from GFX803 (GCN3) to GFX1010 (RDNA) on execution
time.

ATAX BICG BS FIR FLW FWT KM MT PR ReLUSPMV
Benchmark

0.0

0.5

1.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e P3 w/o L1 P3 w/ L1

Figure 9: The effect of adding the new write-evict L1 cache
on benchmarks’ execution time.

either compute power or by DRAM bandwidth do not observe
a performance difference. However, we did observe performance
improvements in the FIR and FLW benchmarks.

A
TA

X
B

IC
G B
S

FI
R

FL
W

FW
T

K
M M
T

P
R

R
eL

U
S

P
M

V

L0 Cache

0.0
0.2
0.4
0.6
0.8
1.0

H
it

ra
te

P3 w/o L1 P3 w/ L1
A

TA
X

B
IC

G B
S

FI
R

FL
W

FW
T

K
M M
T

P
R

R
eL

U
S

P
M

V
L1 Cache

0.0
0.2
0.4
0.6
0.8
1.0

A
TA

X
B

IC
G B
S

FI
R

FL
W

FW
T

K
M M
T

P
R

R
eL

U
S

P
M

V

L2 Cache

0.0
0.2
0.4
0.6
0.8
1.0

Figure 10: The cache hit rate of each levels of caches before
and after the L1 cache is added.

ATAXBICG BS FIR FLW FWT KM MT PR ReLUSPMV
Benchmark

0.0

1.0
1.5
2.0

Sp
ee

du
p

P3@1000MHz P3@1845MHz

Geo-Mean

1.5

Figure 11: The effect of the increased core frequency on the
overall performance. As we increase the core frequency by
1.845×, the performance improved by ≈1.5×.

To understand why FIR and FLW can benefit from the added L1
cache, we plot the cache hit rate for each level of cache in Figure 10.
In general, we see a high degree of diversity across the benchmarks,
as these workloads have dramatically different levels of locality. For

342

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

the BS, FIR, FLW and FWT benchmarks, we observe a relatively
high L1 cache hit rate (around 40%). However, the effects of the high
L1 cache hit on the L2 caches differ across workloads. For BS and
FWT, the L2 cache hit rate remains unchanged, while the L2 cache
hit rate drops significantly for FIR and FLW (in a good way). These
results suggest that the improved L1 cache hit rates can reduce the
number of transactions to the L2 caches for the FIR and the FLW
benchmarks. Because the FIR benchmark already has a high L0 hit
rate, the speedup caused by the L1 cache is not as high as seen in
the FLW benchmark.

Impact of increased frequency. One major change in the
RDNA GPUs is the increased frequency. While the increase is not
an architectural feature, but instead a benefit of shrinking transistor
sizes, we are eager to understand howmuch the increased frequency
can improve performance.

Here, we use P3 as a baseline and increase the GPU core fre-
quency to 1845MHz, which is the frequency that the RX 5500 XT
GPU runs at. Note that as we increase the core frequency, we also
increase the clock speed that controls the L0, L1, and L2 caches to
1845MHz. In AMDGPUs, the cores and the caches work in the same
frequency domain. We do not change the DRAM configuration, so
the DRAM latency and bandwidth remain unchanged.

Overall, we see the performance of all the benchmarks improve,
with the rate of change ranging from 1.25× to 1.84× (see Figure 11).
This suggests that the increase in frequency leads to a marked im-
provement in GPU performance. This is particularly evident in the
PR and ReLU benchmarks, which experience a speedup which is
closely correlated with the increase in the core frequency. This sug-
gests that the performance of these two benchmarks is dominated
by the GPU frequency. After our further investigation with the
Daisen [36] visualization tool, we find that this trend is due to a
faster work-group dispatching rate. These two benchmarks have a
rather short work-group execution time, so the dispatcher cannot
catch up with the work-group retirement speed. Because the CU
can complete the work-groups faster than the rate of new work-
groups arriving to start execution, the number of work-groups
concurrently executing in each CU is limited. This also limits the
number of concurrent in-flight memory transactions. Increasing
the core frequency accelerates the dispatching speed and increases
the occupancy of the CUs, allowing the CUs to better utilize the
memory bandwidth. This effect is also observed in the case study
discussed in the Daisen paper [36]. Meanwhile, we also notice that
the average speedup (geometrical mean) is only 1.5×, suggesting
that the increased core frequency still needs to be accompanied by
improved DRAM performance.

7 DISCUSSION
Using a simulator to understand the rationale behind archi-
tectural changes. Our experiments in Section 6 help us under-
stand part of the design rationale behind changes to AMD GPUs.
To the best of our knowledge, our study is the first to perform this
type of analysis. Here, we want to reflect on the benefits of having
a simulator such as NaviSim available for evaluating the reasons
for these changes.

Overall, we find that the flexibility of using a simulator enables us
to evaluate specific hardware design choices. We are able to isolate

the potential benefits of each architectural feature. For example,
we can change the CUs with DCUs, without impacting any other
features, including the GPU frequency. This is very challenging to
do with RTL and impossible to do on live hardware.

However, we also find some challenges when designing these
experiments. One major challenge is determining the validity of
the modeled configurations. For example, earlier simulators (e.g.,
MGPUSim) simply use an ideal network to connect the L1 and
L2 caches, only counting the latency of the network as part of
the L2 cache latency. However, as we alter the network in our
experiments, as shown in Figure 9, we believe that network latency
should be lower when the L1 cache is present. Since it is hard to
use microbenchmarks to separate out the latency of the network
versus the L2 cache for both cases, we may lose some opportunities
to identify the true benefits of the L1 cache.

Limitations. While we have shown that NaviSim can achieve
high accuracy, there are several unique architectural features that
are not presently modeled. For example, we do not support the
CLAUSE instruction in the RDNA ISA [4], which serves as a perfor-
mance hint to prevent the DCUs from switching contexts. We also
do not implement instructions that explicitly flush the L0 caches.
We find these features are rarely used and do not have a major per-
formance impact. We will be implementing both of these features
in future work.

Additionally, NaviSim delivers a simulator model for only one
generation of AMD GPUs. We do not support simulating other
versions of the GPUs and GPUs from other vendors. However, we
do not consider this as a disadvantage as focusing on one simulator
model allows us to ensure the fidelity of the GPU. Most widely used
GPU simulators (e.g., GPGPUSim [7], Multi2Sim [38]) started with a
single GPUmodel and gradually added newmodels to the simulator
infrastructures. Also, considering that NaviSim is developed using
the same underlying simulator engine as MGPUSim, users can
easily combine the two simulators to simulate both AMD GCN
architecture and RDNA architecture.

8 RELATEDWORK
GPU Simulators. GPU simulators have been critical infrastruc-
tures that enable GPU architecture design validation. To date, the
GPU architecture research community has devoted major effort
into developing GPU simulators and emulators. Earlier tools in-
clude Barra [9] and GPU Ocelot [12, 21]), which provide functional
GPU emulation support, though do not support time modeling.
Next, GPGPUSim [7] and Multi2Sim [38] were introduced to de-
liver reliable performance modeling of NVIDIA and AMD GPUs.
GPGPUSim has been extended to support additional GPU features,
such as virtual addressing [6], concurrent kernel execution [42], par-
allel simulation [16], and trace-based simulation [22]. Meanwhile,
Multi2Sim added support for the NVIDIA Kepler architecture [14].

In recent years, more simulators have been developed, primarily
to support newer GPU architectures. For example, Macsim [24] sim-
ulates the Intel GPU architecture. The AMD gem5 GPU model [15]
is a component added to the gem5 simulator and is dedicated to the
AMDGCN3 architecture. MGPUSim [33] is also a high-performance
parallel GPU simulator targeting the AMD GCN3 architecture.

343

PACT ’22, October 8–12, 2022, Chicago, IL, USA Bao, Sun, Feric, Shen, Weston, Abellán, Baruah, Kim, Joshi, and Kaeli

Moreover, Accel-Sim [22] is an extension to the GPGPUSim infras-
tructure that can simulate closed-source GPU programs, utilizing a
trace-based simulation method. Accel-Sim also added support for
the NVIDIA Kepler, Pascal, Volta, and Turing architectures. Finally,
NVArchSim [40] is an internal simulator used by NVIDIA, with
much higher performance as compared to GPGPUSim.

The design and development of NaviSim have been inspired by
existing simulators. NaviSim shares the simulator core technology
with MGPUSim, and hence, inherits the high performance, high
flexibility, and multi-GPU simulation capability of MGPUSim. Addi-
tionally, to the best of our knowledge, NaviSim is the first simulator
that can simulate one of the newest RDNA GPU architectures and
is validated with one of the most rigorous validation processes,
providing a reliable baseline for future GPU architecture research.

Prior work with GPU simulators has explored and emulating
capabilities of different aspects of a GPU. The need for architectural
level simulators continuously grows as researchers employ them
more within the domain of high performance computing.

9 CONCLUSION
Up-to-date and accurate architectural simulators that can faith-
fully model today’s computing platforms are key toolsets for both
developing a comprehensive understanding of current comput-
ing design trends, as well as evaluating new design ideas to build
forward-looking computing platforms. In the context of AMD GPU
platforms, this paper bridges these important gaps by proposing
NaviSim, the first cycle-level simulator that targets state-of-the-art
RDNA-based GPUs. Through our intensive and rigorous validation
methodology, which included developing several microbenchmarks
and building on the Akita simulation framework [33], we are able
to calibrate NaviSim execution to achieve a small 9.85% average
simulation error, as compared to hardware execution on an AMD
RX 5500 XT RDNA GPU. To showcase how NaviSim can be used to
explore the rationale behind critical architectural design decisions
made in the transition from pre-RDNA (GCN-based) GPUs, we
carry out a set of use cases to quantitatively analyze the effects of
different RDNA features on workload performance. By supporting
GPU programs developed in both OpenCL and HIP, NaviSim con-
tributes a valuable simulation framework for further design-space
exploration, and enables the research and design of next-generation
GPUs based on the RDNA architecture.

ACKNOWLEDGMENTS
This work is supported in part by gifts from AMD, William & Mary
start-up funding, and project grant PID2020-112827GB-I00 funded
by MCIN/AEI/ 10.13039/501100011033.

REFERENCES
[1] AmirAli Abdolrashidi, Hodjat Asghari Esfeden, Ali Jahanshahi, Kaustubh

Singh, Nael Abu-Ghazaleh, and Daniel Wong. 2021. Blockmaestro: Enabling
programmer-transparent task-based execution in GPU systems. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). IEEE, IEEE,
New York, NY, 333–346.

[2] AMD Inc. 2012. AMD Graphics Core Next Architecture. https://www.
techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf

[3] AMD Inc. 2019. Introducing RDNA Architecture, The all new Radeon gaming
architecture powering “Navi”. https://www.amd.com/system/files/documents/
rdna-whitepaper.pdf

[4] AMD Inc. 2020. "RDNA 1.0" Instruction Set Architecture, Reference Guide.
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf

[5] AMD Inc. 2022. HIP Programming Guide. https://rocmdocs.amd.com/en/latest/
Programming_Guides/HIP-GUIDE.html

[6] Rachata Ausavarungnirun, Joshua Landgraf, VanceMiller, Saugata Ghose, Jayneel
Gandhi, Christopher J Rossbach, and Onur Mutlu. 2017. Mosaic: a GPU memory
manager with application-transparent support for multiple page sizes. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, Cambridge, MA, USA, 136–150.

[7] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE,
IEEE, Boston, MA USA, 163–174.

[8] Tsann-Bim Chiou, Alek C Chen, Mircea Dusa, and Shih-En Tseng. 2016. Impact
of EUV patterning scenario on different design styles and their ground rules for
7nm/5nm node BEOL layers. In Design-Process-Technology Co-optimization for
Manufacturability X, Vol. 9781. International Society for Optics and Photonics,
SPIE, Bellingham, Washington USA, 978107.

[9] Caroline Collange, Marc Daumas, David Defour, and David Parello. 2010. Barra:
A Parallel Functional Simulator for GPGPU. In 2010 IEEE International Symposium
onModeling, Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, Miami, Florida, USA, 351–360. https://doi.org/10.1109/MASCOTS.2010.43

[10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU-
3). Association for Computing Machinery, New York, NY, USA, 63–74. https:
//doi.org/10.1145/1735688.1735702

[11] Shi Dong and David Kaeli. 2017. DNNMark: A Deep Neural Network Benchmark
Suite for GPUs. In Proceedings of the General Purpose GPUs (Austin, TX, USA)
(GPGPU-10). Association for Computing Machinery, New York, NY, USA, 63–72.
https://doi.org/10.1145/3038228.3038239

[12] Naila Farooqui, Andrew Kerr, Gregory Diamos, Sudhakar Yalamanchili, and
Karsten Schwan. 2011. A framework for dynamically instrumenting gpu compute
applications within gpu ocelot. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units. ACM, Newport Beach, CA, 1–9.

[13] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2020. Adaptive
page migration for irregular data-intensive applications under GPU memory
oversubscription. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, IEEE, New Orleans, Louisiana USA, 451–461.

[14] Xun Gong, Rafael Ubal, and David Kaeli. 2017. Multi2Sim Kepler: A detailed
architectural GPU simulator. In 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, IEEE, Santa Rosa, CA, 269–278.

[15] Anthony Gutierrez, Bradford M Beckmann, Alexandru Dutu, Joseph Gross,
Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Brandon
Potter, Sooraj Puthoor, et al. 2018. Lost in abstraction: Pitfalls of analyzing gpus
at the intermediate language level. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, IEEE, Vienna, Austria,
608–619.

[16] Clayton Hughes, Simon David Hammond, Mengchi Zhang, Yechen Liu, Tim
Rogers, and Robert J Hoekstra. 2021. SST-GPU: A Scalable SST GPU Component for
Performance Modeling and Profiling. Technical Report. Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

[17] Open Source Intiative. 1980. The MIT License.
[18] CL Jermain, GE Rowlands, RA Buhrman, and DC Ralph. 2016. GPU-accelerated

micromagnetic simulations using cloud computing. Journal of Magnetism and
Magnetic Materials 401 (2016), 320–322.

[19] JEDEC JESD250. 2017. Graphics double data rate 6 (GDDR6) SGRAM standard.
JEDEC Solid State Technology Association.

[20] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. 2015. Hetero-
geneous computing with OpenCL 2.0. Morgan Kaufmann, Burlington,MA,USA.

[21] AndrewKerr, Gregory Diamos, and Sudhakar Yalamanchili. 2012. Gpu application
development, debugging, and performance tuning with gpu ocelot. In GPU
Computing Gems Jade Edition. Elsevier, Amsterdam, Netherlands, 409–427.

[22] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. 2020.
Accel-Sim: An extensible simulation framework for validated GPU modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, IEEE, Valencia, Spain, 473–486.

[23] Gwangsun Kim, Minseok Lee, Jiyun Jeong, and John Kim. 2014. Multi-GPU Sys-
tem Design with Memory Networks. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (Cambridge, United Kingdom)
(MICRO-47). IEEE Computer Society, USA, 484–495. https://doi.org/10.1109/
MICRO.2014.55

[24] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun
Lim, and Tri Pho. 2012. Macsim: A cpu-gpu heterogeneous simulation framework
user guide. Georgia Institute of Technology, Atlanta, GA.

[25] Joonyoung Kim and Younsu Kim. 2014. HBM: Memory solution for bandwidth-
hungry processors. In 2014 IEEE Hot Chips 26 Symposium (HCS). IEEE, IEEE,

344

https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://doi.org/10.1109/MASCOTS.2010.43
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/3038228.3038239
https://doi.org/10.1109/MICRO.2014.55
https://doi.org/10.1109/MICRO.2014.55

NaviSim: A Highly Accurate GPU Simulator for AMD RDNA GPUs PACT ’22, October 8–12, 2022, Chicago, IL, USA

Cupertino, CA, 1–24.
[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(Lake Tahoe, Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY, USA,
1097–1105.

[27] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Computer
Architecture Letters 19, 2 (2020), 106–109.

[28] Mauro Morsiani and Renzo Davoli. 1999. Learning operating systems structure
and implementation through the MPS computer system simulator. ACM SIGCSE
Bulletin 31, 1 (1999), 63–67.

[29] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2017. Dynamic Resource
Management for Efficient Utilization of Multitasking GPUs. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). Association for
Computing Machinery, New York, NY, USA, 527–540. https://doi.org/10.1145/
3037697.3037707

[30] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
[31] AMD Staff. 2014. Opencl and the AMD App SDK v2. 4.
[32] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David R. Kaeli. 2019. Summa-

rizing CPU and GPU Design Trends with Product Data. CoRR abs/1911.11313
(2019), 1–5.

[33] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, SpencerHance, CarterMcCardwell, Vincent Zhao, Harrison
Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,
John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 197–209. https://doi.org/10.
1145/3307650.3322230

[34] Y. Sun, X. Gong, A. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mccardwell, A. Villegas,
and D. Kaeli. 2016. Hetero-mark, a benchmark suite for CPU-GPU collaborative
computing. In 2016 IEEE International Symposium on Workload Characterization
(IISWC). IEEE Computer Society, Los Alamitos, CA, USA, 1–10. https://doi.org/

10.1109/IISWC.2016.7581262
[35] Y. Sun, S. Mukherjee, T. Baruah, S. Dong, J. Gutierrez, P. Mohan, and D. Kaeli.

2018. Evaluating Performance Tradeoffs on the Radeon Open Compute Platform.
In 2018 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE Computer Society, Los Alamitos, CA, USA, 209–218.
https://doi.org/10.1109/ISPASS.2018.00034

[36] Yifan Sun, Yixuan Zhang, Ali Mosallaei, Michael D Shah, Cody Dunne, and
David Kaeli. 2021. Daisen: A Framework for Visualizing Detailed GPU Execution.
Eurographics Conference on Visualization 40, 3 (2021), 239–250.

[37] The Go Project. 2019. Effective Go. https://golang.org/doc/effective_go.html.
[38] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012.

Multi2Sim: A Simulation Framework for CPU-GPU Computing. In Proceedings of
the 21st International Conference on Parallel Architectures and Compilation Tech-
niques (Minneapolis, Minnesota, USA) (PACT ’12). Association for Computing Ma-
chinery, New York, NY, USA, 335–344. https://doi.org/10.1145/2370816.2370865

[39] Henk A Van der Vorst. 1992. Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal
on scientific and Statistical Computing 13, 2 (1992), 631–644.

[40] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish
Chatterjee, Nan Jiang, and David Nellans. 2021. Need for speed: Experiences
building a trustworthy system-level GPU simulator. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, IEEE,
Seoul, Korea (South), 868–880.

[41] Vasily Volkov and James W Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Super-
computing. IEEE, IEEE, Austin, TX, USA, 1–11.

[42] Haonan Wang, Fan Luo, Mohamed Ibrahim, Onur Kayiran, and Adwait Jog. 2018.
Efficient and fair multi-programming in GPUs via effective bandwidth man-
agement. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, IEEE, Vienna, Austria, 247–258.

[43] Lingyuan Wang, Miaoqing Huang, and Tarek El-Ghazawi. 2011. Exploiting
concurrent kernel execution on graphic processing units. In 2011 International
Conference on High Performance Computing & Simulation. IEEE, IEEE, Istanbul,
Turkey, 24–32.

345

https://doi.org/10.1145/3037697.3037707
https://doi.org/10.1145/3037697.3037707
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1109/IISWC.2016.7581262
https://doi.org/10.1109/IISWC.2016.7581262
https://doi.org/10.1109/ISPASS.2018.00034
https://doi.org/10.1145/2370816.2370865

	Abstract
	1 Introduction
	2 Background
	3 NaviSim
	4 Methodology
	5 Simulator Validation
	6 Case Studies: Understanding the RDNA Architecture Features
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

